Averages over starlike sets, starlike maximal functions, and homogeneous singular integrals
HTML articles powered by AMS MathViewer
- by David K. Watson and Richard L. Wheeden
- Trans. Amer. Math. Soc. 363 (2011), 5179-5206
- DOI: https://doi.org/10.1090/S0002-9947-2011-05135-4
- Published electronically: May 18, 2011
- PDF | Request permission
Abstract:
We improve some of the results in our 1999 paper concerning weighted norm estimates for homogeneous singular integrals with rough kernels. Using a representation of such integrals in terms of averages over starlike sets, we prove a two-weight $L^{p}$ inequality for $1 < p < 2$ which we were previously able to obtain only for $p \geq 2$. We also construct examples of weights that satisfy conditions which were shown in our earlier paper to be sufficient for one-weight inequalities when $1<p<\infty$.References
- Kenneth F. Andersen and Russel T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19–31. MR 604351, DOI 10.4064/sm-69-1-19-31
- Calixto P. Calderón, Differentiation through starlike sets in $\textbf {R}^{m}$, Studia Math. 48 (1973), 1–13. MR 330395, DOI 10.4064/sm-48-1-1-13
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- Sagun Chanillo, David K. Watson, and Richard L. Wheeden, Some integral and maximal operators related to starlike sets, Studia Math. 107 (1993), no. 3, 223–255. MR 1247201, DOI 10.4064/sm-107-3-223-255
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97–101. MR 420115, DOI 10.4064/sm-57-1-97-101
- Javier Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869–880. MR 1089418, DOI 10.1090/S0002-9947-1993-1089418-5
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Steve Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators, Indiana Univ. Math. J. 42 (1993), no. 1, 1–14. MR 1218703, DOI 10.1512/iumj.1993.42.42001
- S. Hofmann, D. K. Watson, Erratum to Steve Hofmann’s paper, “Weighted norm inequalities and vector-valued inequalities for certain rough operators”, preprint.
- Peter W. Jones, Factorization of $A_{p}$ weights, Ann. of Math. (2) 111 (1980), no. 3, 511–530. MR 577135, DOI 10.2307/1971107
- Douglas S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259 (1980), no. 1, 235–254. MR 561835, DOI 10.1090/S0002-9947-1980-0561835-X
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Douglas S. Kurtz and Richard L. Wheeden, A note on singular integrals with weights, Proc. Amer. Math. Soc. 81 (1981), no. 3, 391–397. MR 597648, DOI 10.1090/S0002-9939-1981-0597648-9
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt and Richard L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc. 161 (1971), 249–258. MR 285938, DOI 10.1090/S0002-9947-1971-0285938-7
- C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296–308. MR 1260114, DOI 10.1112/jlms/49.2.296
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159–172. MR 92943, DOI 10.1090/S0002-9947-1958-0092943-6
- Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503903
- David K. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. J. 60 (1990), no. 2, 389–399. MR 1047758, DOI 10.1215/S0012-7094-90-06015-6
- —, ‘Dual’ weighted bounds for maximal operators from smoothness or Fourier transform estimates, preprint.
- —, $A_{1}$ weights and weak type $(1, 1)$ estimates for rough operators, preprint.
- David K. Watson, Vector-valued inequalities, factorization, and extrapolation for a family of rough operators, J. Funct. Anal. 121 (1994), no. 2, 389–415. MR 1272132, DOI 10.1006/jfan.1994.1053
- —, Some weighted norm inequalities for rough Calderón–Zygmund operators having no Fourier transform decay, to appear.
- David K. Watson and Richard L. Wheeden, Norm estimates and representations for Calderón-Zygmund operators using averages over starlike sets, Trans. Amer. Math. Soc. 351 (1999), no. 10, 4127–4171. MR 1603994, DOI 10.1090/S0002-9947-99-02313-2
- J. Michael Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), no. 2, 661–692. MR 972707, DOI 10.1090/S0002-9947-1989-0972707-9
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- David K. Watson
- Affiliation: Department of Mathematics, The College of New Jersey, 2000 Pennington Road, Ewing, New Jersey 08628
- Email: davidkirkwatson@gmail.com
- Richard L. Wheeden
- Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
- Email: wheeden@math.rutgers.edu
- Received by editor(s): July 14, 2008
- Received by editor(s) in revised form: June 10, 2009
- Published electronically: May 18, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5179-5206
- MSC (2000): Primary 42B20, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05135-4
- MathSciNet review: 2813412