Tube structures, Hardy spaces and extension of CR distributions
HTML articles powered by AMS MathViewer
- by G. Hoepfner, J. Hounie and L. A. Carvalho dos Santos
- Trans. Amer. Math. Soc. 363 (2011), 5091-5109
- DOI: https://doi.org/10.1090/S0002-9947-2011-05138-X
- Published electronically: May 11, 2011
- PDF | Request permission
Abstract:
We consider rough tubes $X+i\mathbb {R}^m\subset \mathbb {C}^m$, where $X\subset \mathbb {R}^m$ is a measurable set, and extend the notion of $CR$ function to the space $L^\infty (X,h^p(\mathbb {R}^m))$, where $h^p(\mathbb {R}^m)$, $0<p<\infty$, is Goldberg’s semilocal Hardy space. We show that if $X$ is the image of some connected manifold by some $C^1$ map, then all such $CR$ functions can be extended to the convex hull of the tube as $CR$ functions $\in L^\infty (\mathrm {ch}(X),h^p(\mathbb {R}^m))$. This extends previous work of Boggess.References
- M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. (2) 113 (1981), no. 2, 387–421. MR 607899, DOI 10.2307/2006990
- Shiferaw Berhanu, Paulo D. Cordaro, and Jorge Hounie, An introduction to involutive structures, New Mathematical Monographs, vol. 6, Cambridge University Press, Cambridge, 2008. MR 2397326, DOI 10.1017/CBO9780511543067
- S. Bochner, A theorem on analytic continuation of functions in several variables, Ann. of Math. (2) 39 (1938), no. 1, 14–19. MR 1503384, DOI 10.2307/1968709
- Salomon Bochner and William Ted Martin, Several Complex Variables, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR 0027863
- Albert Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. MR 1211412
- Al Boggess, The holomorphic extension of $H^p$-CR functions on tube submanifolds, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1427–1435. MR 1600104, DOI 10.1090/S0002-9939-99-04828-5
- André Boivin and Roman Dwilewicz, Extension and approximation of CR functions on tube manifolds, Trans. Amer. Math. Soc. 350 (1998), no. 5, 1945–1956. MR 1443864, DOI 10.1090/S0002-9947-98-02019-4
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. MR 523600
- Jorge Hounie and Pedro Malagutti, On the convergence of the Baouendi-Treves approximation formula, Comm. Partial Differential Equations 23 (1998), no. 7-8, 1305–1347. MR 1642611, DOI 10.1080/03605309808821386
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
Bibliographic Information
- G. Hoepfner
- Affiliation: Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil
- MR Author ID: 768261
- ORCID: 0000-0002-4639-7539
- Email: hoepfner@dm.ufscar.br
- J. Hounie
- Affiliation: Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil
- MR Author ID: 88720
- Email: hounie@dm.ufscar.br
- L. A. Carvalho dos Santos
- Affiliation: Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil
- Email: luis@dm.ufscar.br
- Received by editor(s): May 11, 2009
- Published electronically: May 11, 2011
- Additional Notes: This work was supported in part by CNPq and FAPESP
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 5091-5109
- MSC (2000): Primary 32A35, 32V25, 35N10; Secondary 42B30
- DOI: https://doi.org/10.1090/S0002-9947-2011-05138-X
- MathSciNet review: 2813409