Quiver varieties and path realizations arising from adjoint crystals of type $A_n^{(1)}$
HTML articles powered by AMS MathViewer
- by Seok-Jin Kang and Euiyong Park
- Trans. Amer. Math. Soc. 363 (2011), 5341-5366
- DOI: https://doi.org/10.1090/S0002-9947-2011-05246-3
- Published electronically: May 9, 2011
- PDF | Request permission
Abstract:
Let $B(\Lambda _0)$ be the level 1 highest weight crystal of the quantum affine algebra $U_q(A_n^{(1)})$. We construct an explicit crystal isomorphism between the geometric realization $\mathbb {B}(\Lambda _0)$ of $B(\Lambda _0)$ via quiver varieties and the path realization ${\mathcal P}^{\textrm {ad}}(\Lambda _0)$ of $B(\Lambda _0)$ arising from the adjoint crystal $B^{\textrm {ad}}$.References
- Georgia Benkart, Igor Frenkel, Seok-Jin Kang, and Hyeonmi Lee, Level 1 perfect crystals and path realizations of basic representations at $q=0$, Int. Math. Res. Not. , posted on (2006), Art. ID 10312, 28. MR 2272099, DOI 10.1155/IMRN/2006/10312
- Etsur\B{o} Date, Michio Jimbo, Atsuo Kuniba, Tetsuji Miwa, and Masato Okado, Paths, Maya diagrams and representations of $\widehat {{\mathfrak {s}}{\mathfrak {l}}}(r,\textbf {C})$, Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp.ย 149โ191. MR 1048597, DOI 10.2969/aspm/01910149
- Igor B. Frenkel and Alistair Savage, Bases of representations of type $A$ affine Lie algebras via quiver varieties and statistical mechanics, Int. Math. Res. Not. 28 (2003), 1521โ1547. MR 1976600, DOI 10.1155/S1073792803211284
- Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, Providence, RI, 2002. MR 1881971, DOI 10.1090/gsm/042
- Michio Jimbo, Kailash C. Misra, Tetsuji Miwa, and Masato Okado, Combinatorics of representations of $U_q(\widehat {{\mathfrak {s}}{\mathfrak {l}}}(n))$ at $q=0$, Comm. Math. Phys. 136 (1991), no.ย 3, 543โ566. MR 1099695
- Seok-Jin Kang, Crystal bases for quantum affine algebras and combinatorics of Young walls, Proc. London Math. Soc. (3) 86 (2003), no.ย 1, 29โ69. MR 1971463, DOI 10.1112/S0024611502013734
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp.ย 449โ484. MR 1187560, DOI 10.1142/s0217751x92003896
- Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), no.ย 3, 499โ607. MR 1194953, DOI 10.1215/S0012-7094-92-06821-9
- Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no.ย 2, 249โ260. MR 1090425, DOI 10.1007/BF02097367
- M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no.ย 2, 465โ516. MR 1115118, DOI 10.1215/S0012-7094-91-06321-0
- Masaki Kashiwara, The crystal base and Littelmannโs refined Demazure character formula, Duke Math. J. 71 (1993), no.ย 3, 839โ858. MR 1240605, DOI 10.1215/S0012-7094-93-07131-1
- Masaki Kashiwara and Yoshihisa Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no.ย 1, 9โ36. MR 1458969, DOI 10.1215/S0012-7094-97-08902-X
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no.ย 2, 447โ498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no.ย 2, 365โ421. MR 1088333, DOI 10.1090/S0894-0347-1991-1088333-2
- Kailash Misra and Tetsuji Miwa, Crystal base for the basic representation of $U_q(\mathfrak {s}\mathfrak {l}(n))$, Comm. Math. Phys. 134 (1990), no.ย 1, 79โ88. MR 1079801
- Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no.ย 2, 365โ416. MR 1302318, DOI 10.1215/S0012-7094-94-07613-8
- Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no.ย 3, 515โ560. MR 1604167, DOI 10.1215/S0012-7094-98-09120-7
- Yoshihisa Saito, Crystal bases and quiver varieties, Math. Ann. 324 (2002), no.ย 4, 675โ688. MR 1942245, DOI 10.1007/s00208-002-0332-6
- Alistair Savage, Geometric and combinatorial realizations of crystal graphs, Algebr. Represent. Theory 9 (2006), no.ย 2, 161โ199. MR 2238365, DOI 10.1007/s10468-005-0565-7
Bibliographic Information
- Seok-Jin Kang
- Affiliation: Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea
- MR Author ID: 307910
- Email: sjkang@math.snu.ac.kr
- Euiyong Park
- Affiliation: Department of Mathematical Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea
- Address at time of publication: School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Korea
- Email: pwy@snu.ac.kr, eypark@kias.re.kr
- Received by editor(s): September 30, 2009
- Received by editor(s) in revised form: November 12, 2009, and November 13, 2009
- Published electronically: May 9, 2011
- Additional Notes: The research of both authors was supported by KRF Grant # 2007-341-C00001.
The second authorโs research was supported by BK21 Mathematical Sciences Division. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5341-5366
- MSC (2010): Primary 05E10, 17B67, 81R10
- DOI: https://doi.org/10.1090/S0002-9947-2011-05246-3
- MathSciNet review: 2813418