Abstract commensurators of profinite groups
HTML articles powered by AMS MathViewer
- by Yiftach Barnea, Mikhail Ershov and Thomas Weigel
- Trans. Amer. Math. Soc. 363 (2011), 5381-5417
- DOI: https://doi.org/10.1090/S0002-9947-2011-05295-5
- Published electronically: March 28, 2011
- PDF | Request permission
Abstract:
In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group $G$ is a group $\mathrm {Comm}(G)$ which depends only on the commensurability class of $G$. We study various properties of $\mathrm {Comm}(G)$; in particular, we find two natural ways to turn it into a topological group. We also use $\mathrm {Comm}(G)$ to study topological groups which contain $G$ as an open subgroup (all such groups are totally disconnected and locally compact). For instance, we construct a topologically simple group which contains the pro-$2$ completion of the Grigorchuk group as an open subgroup. On the other hand, we show that some profinite groups cannot be embedded as open subgroups of compactly generated topologically simple groups. Several celebrated rigidity theorems, such as Pink’s analogue of Mostow’s strong rigidity theorem for simple algebraic groups defined over local fields and the Neukirch-Uchida theorem, can be reformulated as structure theorems for the commensurators of certain profinite groups.References
- Yiftach Barnea and Benjamin Klopsch, Index-subgroups of the Nottingham group, Adv. Math. 180 (2003), no. 1, 187–221. MR 2019222, DOI 10.1016/S0001-8708(02)00102-0
- Laurent Bartholdi and Said N. Sidki, The automorphism tower of groups acting on rooted trees, Trans. Amer. Math. Soc. 358 (2006), no. 1, 329–358. MR 2171236, DOI 10.1090/S0002-9947-05-03712-8
- Hyman Bass and Alexander Lubotzky, Tree lattices, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. MR 1794898, DOI 10.1007/978-1-4612-2098-5
- Armand Borel and Jacques Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571 (French). MR 316587, DOI 10.2307/1970833
- N. Bourbaki, General topology. Chapters 5–10, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French. Reprint of the 1966 edition.
- —, General topology. Chapters 1–4, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French. Reprint of the 1989 English translation.
- Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 113–150 (2001). MR 1839488, DOI 10.1007/BF02698915
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368, DOI 10.1017/CBO9780511470882
- Mikhail Ershov, New just-infinite pro-$p$ groups of finite width and subgroups of the Nottingham group, J. Algebra 275 (2004), no. 1, 419–449. MR 2047455, DOI 10.1016/j.jalgebra.2003.08.012
- Mikhail Ershov, On the commensurator of the Nottingham group, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6663–6678. MR 2678990, DOI 10.1090/S0002-9947-2010-05160-8
- Ivan Fesenko, On just infinite pro-$p$-groups and arithmetically profinite extensions of local fields, J. Reine Angew. Math. 517 (1999), 61–80. MR 1728547, DOI 10.1515/crll.1999.098
- R. I. Grigorchuk, Just infinite branch groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 121–179. MR 1765119
- Benjamin Klopsch, Automorphisms of the Nottingham group, J. Algebra 223 (2000), no. 1, 37–56. MR 1738250, DOI 10.1006/jabr.1999.8040
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Michel Lazard, Groupes analytiques $p$-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603 (French). MR 209286
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Shinichi Mochizuki, A version of the Grothendieck conjecture for $p$-adic local fields, Internat. J. Math. 8 (1997), no. 4, 499–506. MR 1460898, DOI 10.1142/S0129167X97000251
- Jürgen Neukirch, Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterungen, J. Reine Angew. Math. 238 (1969), 135–147 (German). MR 258804, DOI 10.1515/crll.1969.238.135
- Jürgen Neukirch, Kennzeichnung der $p$-adischen und der endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 296–314 (German). MR 244211, DOI 10.1007/BF01425420
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), no. 1, 171–238. MR 2276769, DOI 10.4007/annals.2007.165.171
- Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. (2) 165 (2007), no. 1, 239–273. MR 2276770, DOI 10.4007/annals.2007.165.239
- Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438–504. MR 1637068, DOI 10.1006/jabr.1998.7439
- Florian Pop, On Grothendieck’s conjecture of birational anabelian geometry, Ann. of Math. (2) 139 (1994), no. 1, 145–182. MR 1259367, DOI 10.2307/2946630
- —, On Grothendieck’s conjecture of birational anabelian geometry, II, Preprint, 1994.
- Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197–202 (English, with French summary). MR 667750, DOI 10.24033/bsmf.1959
- B. Rémy, Topological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups, Geom. Funct. Anal. 14 (2004), no. 4, 810–852. With an appendix by P. Bonvin. MR 2084981, DOI 10.1007/s00039-004-0476-5
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- Steven Roman, Field theory, 2nd ed., Graduate Texts in Mathematics, vol. 158, Springer, New York, 2006. MR 2178351
- Claas E. Röver, Abstract commensurators of groups acting on rooted trees, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 45–61. MR 1950873, DOI 10.1023/A:1020916928393
- Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University. MR 1176100, DOI 10.1007/978-3-540-70634-2
- Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. MR 1466966, DOI 10.1007/978-3-642-59141-9
- Kôji Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan 28 (1976), no. 4, 617–620. MR 432593, DOI 10.2969/jmsj/02840617
- D. van Dantzig, Studien über topologische Algebra, Dissertation, 1931.
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York-Heidelberg, 1973. MR 0335656
- Thomas Weigel and Pavel Zalesskii, Profinite groups of finite cohomological dimension, C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 353–358 (English, with English and French summaries). MR 2057163, DOI 10.1016/j.crma.2003.12.022
- G. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), no. 2, 341–363. MR 1299067, DOI 10.1007/BF01450491
- George A. Willis, Compact open subgroups in simple totally disconnected groups, J. Algebra 312 (2007), no. 1, 405–417. MR 2320465, DOI 10.1016/j.jalgebra.2006.06.049
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
- John S. Wilson, On just infinite abstract and profinite groups, New horizons in pro-$p$ groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 181–203. MR 1765120
- John S. Wilson, Large hereditarily just infinite groups, J. Algebra 324 (2010), no. 2, 248–255. MR 2651355, DOI 10.1016/j.jalgebra.2010.03.023
Bibliographic Information
- Yiftach Barnea
- Affiliation: Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
- Email: y.barnea@rhul.ac.uk
- Mikhail Ershov
- Affiliation: Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, Virginia 22904-4137
- MR Author ID: 653972
- Email: ershov@virginia.edu
- Thomas Weigel
- Affiliation: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi, 53, I-20125 Milan, Italy
- MR Author ID: 319262
- Email: thomas.weigel@unimib.it
- Received by editor(s): September 1, 2009
- Received by editor(s) in revised form: January 7, 2010
- Published electronically: March 28, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5381-5417
- MSC (2000): Primary 20E18; Secondary 22D05, 22D45
- DOI: https://doi.org/10.1090/S0002-9947-2011-05295-5
- MathSciNet review: 2813420