Invariant conformal metrics on $\mathbb {S}^n$
HTML articles powered by AMS MathViewer
- by José M. Espinar
- Trans. Amer. Math. Soc. 363 (2011), 5649-5661
- DOI: https://doi.org/10.1090/S0002-9947-2011-05123-8
- Published electronically: April 29, 2011
- PDF | Request permission
Abstract:
In this paper we use the relationship between conformal metrics on the sphere and horospherically convex hypersurfaces in the hyperbolic space for giving sufficient conditions on a conformal metric to be radial under some constraints on the eigenvalues of its Schouten tensor. Also, we study conformal metrics on the sphere which are invariant by a $k-$parameter subgroup of conformal diffeomorphisms of the sphere, giving a bound on its maximum dimension.
Moreover, we classify conformal metrics on the sphere whose eigenvalues of the Shouten tensor are all constant (we call them isoparametric conformal metrics), and we use a classification result for radial conformal metrics which are solutions of some $\sigma _k -$Yamabe type problem for obtaining existence of rotational spheres and Delaunay-type hypersurfaces for some classes of Weingarten hypersurfaces in $\mathbb {H} ^{n+1}$.
References
- Antonio Ambrosetti and Andrea Malchiodi, On the symmetric scalar curvature problem on $S^n$, J. Differential Equations 170 (2001), no. 1, 228–245. MR 1813108, DOI 10.1006/jdeq.2000.3816
- A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106–172. MR 1087949, DOI 10.1016/0022-1236(91)90026-2
- Jean-Pierre Bourguignon and Jean-Pierre Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987), no. 2, 723–736. MR 882712, DOI 10.1090/S0002-9947-1987-0882712-7
- Robert L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 12, 321–347, 353 (1988) (English, with French summary). Théorie des variétés minimales et applications (Palaiseau, 1983–1984). MR 955072
- Élie Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938), no. 1, 177–191 (French). MR 1553310, DOI 10.1007/BF02410700
- M. do Carmo and M. Dajczer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277 (1983), no. 2, 685–709. MR 694383, DOI 10.1090/S0002-9947-1983-0694383-X
- Sun-Yung Alice Chang, Conformal invariants and partial differential equations, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 3, 365–393. MR 2149088, DOI 10.1090/S0273-0979-05-01058-X
- Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang, An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2) 155 (2002), no. 3, 709–787. MR 1923964, DOI 10.2307/3062131
- Sun-Yung A. Chang, Matthew J. Gursky, and Paul Yang, An a priori estimate for a fully nonlinear equation on four-manifolds, J. Anal. Math. 87 (2002), 151–186. Dedicated to the memory of Thomas H. Wolff. MR 1945280, DOI 10.1007/BF02868472
- S.-Y. Alice Chang, Zheng-Chao Han, and Paul Yang, Classification of singular radial solutions to the $\sigma _k$ Yamabe equation on annular domains, J. Differential Equations 216 (2005), no. 2, 482–501. MR 2165306, DOI 10.1016/j.jde.2005.05.005
- Sun-Yung Alice Chang and Paul C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math. 159 (1987), no. 3-4, 215–259. MR 908146, DOI 10.1007/BF02392560
- Sun-Yung A. Chang and Paul C. Yang, Conformal deformation of metrics on $S^2$, J. Differential Geom. 27 (1988), no. 2, 259–296. MR 925123
- Wenxiong Chen and Congming Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math. (2) 145 (1997), no. 3, 547–564. MR 1454703, DOI 10.2307/2951844
- Wenxiong Chen and Congming Li, Prescribing scalar curvature on $S^n$, Pacific J. Math. 199 (2001), no. 1, 61–78. MR 1847147, DOI 10.2140/pjm.2001.199.61
- Chiun-Chuan Chen and Chang-Shou Lin, Prescribing scalar curvature on $S^N$. I. A priori estimates, J. Differential Geom. 57 (2001), no. 1, 67–171. MR 1871492
- Marcos Dajczer, Submanifolds and isometric immersions, Mathematics Lecture Series, vol. 13, Publish or Perish, Inc., Houston, TX, 1990. Based on the notes prepared by Mauricio Antonucci, Gilvan Oliveira, Paulo Lima-Filho and Rui Tojeiro. MR 1075013
- Charles L. Epstein, The hyperbolic Gauss map and quasiconformal reflections, J. Reine Angew. Math. 372 (1986), 96–135. MR 863521, DOI 10.1515/crll.1986.372.96
- Charles L. Epstein, The asymptotic boundary of a surface imbedded in $H^3$ with nonnegative curvature, Michigan Math. J. 34 (1987), no. 2, 227–239. MR 894873, DOI 10.1307/mmj/1029003554
- C.L. Epstein, Envelopes of horospheres and Weingarten surfaces in hyperbolic 3-space. Unpublished (1986).
- José F. Escobar and Richard M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), no. 2, 243–254. MR 856845, DOI 10.1007/BF01389071
- José M. Espinar, José A. Gálvez, and Pablo Mira, Hypersurfaces in $\Bbb H^{n+1}$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 4, 903–939. MR 2538508, DOI 10.4171/JEMS/170
- Qinian Jin, YanYan Li, and Haoyuan Xu, Symmetry and asymmetry: the method of moving spheres, Adv. Differential Equations 13 (2008), no. 7-8, 601–640. MR 2479025
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- Jerry L. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975), 317–331. MR 375153, DOI 10.2307/1970993
- Yan Yan Li, Prescribing scalar curvature on $S^n$ and related problems. I, J. Differential Equations 120 (1995), no. 2, 319–410. MR 1347349, DOI 10.1006/jdeq.1995.1115
- Yanyan Li, Prescribing scalar curvature on $S^n$ and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 (1996), no. 6, 541–597. MR 1383201, DOI 10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
- Yan Yan Li, Degenerate conformally invariant fully nonlinear elliptic equations, Arch. Ration. Mech. Anal. 186 (2007), no. 1, 25–51. MR 2338350, DOI 10.1007/s00205-006-0041-5
- Yan Yan Li, Local gradient estimates of solutions to some conformally invariant fully nonlinear equations, C. R. Math. Acad. Sci. Paris 343 (2006), no. 4, 249–252 (English, with English and French summaries). MR 2245387, DOI 10.1016/j.crma.2006.06.008
- YanYan Li, Some nonlinear elliptic equations from geometry, Proc. Natl. Acad. Sci. USA 99 (2002), no. 24, 15287–15290. MR 1946765, DOI 10.1073/pnas.222494999
- Aobing Li and Yanyan Li, On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math. 56 (2003), no. 10, 1416–1464. MR 1988895, DOI 10.1002/cpa.10099
- Aobing Li and Yan Yan Li, On some conformally invariant fully nonlinear equations. II. Liouville, Harnack and Yamabe, Acta Math. 195 (2005), 117–154. MR 2233687, DOI 10.1007/BF02588052
- Charles Loewner and Louis Nirenberg, Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 245–272. MR 0358078
- Rafe Mazzeo and Frank Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom. 44 (1996), no. 2, 331–370. MR 1425579
- J. Moser, On a nonlinear problem in differential geometry, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 273–280. MR 0339258
- J.-M. Schlenker, Hypersurfaces in $H^n$ and the space of its horospheres, Geom. Funct. Anal. 12 (2002), no. 2, 395–435. MR 1911666, DOI 10.1007/s00039-002-8252-x
- Jeff A. Viaclovsky, Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J. 101 (2000), no. 2, 283–316. MR 1738176, DOI 10.1215/S0012-7094-00-10127-5
Bibliographic Information
- José M. Espinar
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain
- Email: jespinar@ugr.es
- Received by editor(s): November 17, 2008
- Received by editor(s) in revised form: May 22, 2009
- Published electronically: April 29, 2011
- Additional Notes: The author was partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J. Andalucía Grants P06-FQM-01642 and FQM325.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5649-5661
- MSC (2000): Primary 53A10; Secondary 49Q05, 53C42
- DOI: https://doi.org/10.1090/S0002-9947-2011-05123-8
- MathSciNet review: 2817403