On the real multidimensional rational $K$-moment problem
HTML articles powered by AMS MathViewer
- by Jaka Cimprič, Murray Marshall and Tim Netzer
- Trans. Amer. Math. Soc. 363 (2011), 5773-5788
- DOI: https://doi.org/10.1090/S0002-9947-2011-05225-6
- Published electronically: May 24, 2011
- PDF | Request permission
Abstract:
We present a solution to the real multidimensional rational $K$-moment problem, where $K$ is defined by finitely many polynomial inequalities. More precisely, let $S$ be a finite set of real polynomials in $\underline {X}=(X_1,\ldots ,X_n)$ such that the corresponding basic closed semialgebraic set $K_S$ is nonempty. Let $E=D^{-1}\mathbb {R}[\underline {X}]$ be a localization of the real polynomial algebra and let $T_S^E$ be the preordering on $E$ generated by $S$. We show that every linear functional $L$ on $E$ such that $L(T_S^E) \ge 0$ is represented by a positive measure $\mu$ on a certain subset of $K_S$, provided $D$ contains an element that grows fast enough on $K_S$.References
- F. Acquistapace, C. Andradas, and F. Broglia, The strict Positivstellensatz for global analytic functions and the moment problem for semianalytic sets, Math. Ann. 316 (2000), no. 4, 609–616. MR 1758445, DOI 10.1007/s002080050346
- N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR 0184042
- Torben Maack Bisgaard, The topology of finitely open sets is not a vector space topology, Arch. Math. (Basel) 60 (1993), no. 6, 546–552. MR 1216700, DOI 10.1007/BF01236081
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295, DOI 10.1007/978-3-642-61715-7
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol. 5, Cambridge University Press, Cambridge, 1999. MR 1676258, DOI 10.1017/CBO9780511530050
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Elements of a theory of orthogonal rational functions, Rev. Acad. Canaria Cienc. 11 (1999), no. 1-2, 127–152 (English, with English and Spanish summaries). MR 1780786
- James D. Chandler Jr., Rational moment problems for compact sets, J. Approx. Theory 79 (1994), no. 1, 72–88. MR 1294321, DOI 10.1006/jath.1994.1114
- S. Kuhlmann and M. Marshall, Positivity, sums of squares and the multi-dimensional moment problem, Trans. Amer. Math. Soc. 354 (2002), no. 11, 4285–4301. MR 1926876, DOI 10.1090/S0002-9947-02-03075-1
- S. G. Krantz, H. R. Parks, Geometric Integration Theory, http://www.math. wustl.edu/˜sk/books/root.pdf.
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959, DOI 10.1090/surv/146
- M. Marshall, Extending the Archimedean Positivstellensatz to the non-compact case, Canad. Math. Bull. 44 (2001), no. 2, 223–230. MR 1827856, DOI 10.4153/CMB-2001-022-2
- M. Marshall, Approximating positive polynomials using sums of squares, Canad. Math. Bull. 46 (2003), no. 3, 400–418. MR 1994866, DOI 10.4153/CMB-2003-041-9
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503, DOI 10.1017/CBO9780511574757.003
- Alexander Prestel and Charles N. Delzell, Positive polynomials, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR 1829790, DOI 10.1007/978-3-662-04648-7
- Mihai Putinar and Florian-Horia Vasilescu, Solving moment problems by dimensional extension, Ann. of Math. (2) 149 (1999), no. 3, 1087–1107. MR 1709313, DOI 10.2307/121083
- Bruce Reznick, Uniform denominators in Hilbert’s seventeenth problem, Math. Z. 220 (1995), no. 1, 75–97. MR 1347159, DOI 10.1007/BF02572604
- Bruce Reznick, Some concrete aspects of Hilbert’s 17th Problem, Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996) Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 251–272. MR 1747589, DOI 10.1090/conm/253/03936
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Claus Scheiderer, Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1039–1069. MR 1675230, DOI 10.1090/S0002-9947-99-02522-2
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- Markus Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz, J. Reine Angew. Math. 554 (2003), 19–45. MR 1952167, DOI 10.1515/crll.2003.004
- Jan Stochel and F. H. Szafraniec, Algebraic operators and moments on algebraic sets, Portugal. Math. 51 (1994), no. 1, 25–45. MR 1281954
- F.-H. Vasilescu, Spaces of fractions and positive functionals, Math. Scand. 96 (2005), no. 2, 257–279. MR 2153414, DOI 10.7146/math.scand.a-14956
- J. H. Williamson, On topologising the field $C(t)$, Proc. Amer. Math. Soc. 5 (1954), 729–734. MR 63574, DOI 10.1090/S0002-9939-1954-0063574-0
Bibliographic Information
- Jaka Cimprič
- Affiliation: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, SI-1000 Ljubljana, Slovenija
- Email: cimpric@fmf.uni-lj.si
- Murray Marshall
- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E6
- Email: marshall@math.usask.ca
- Tim Netzer
- Affiliation: Fachbereich Mathematik und Informatik, Universität Leipzig, D-04009 Leipzig, Germany
- Email: tim.netzer@math.uni-leipzig.de
- Received by editor(s): July 30, 2008
- Received by editor(s) in revised form: October 9, 2009
- Published electronically: May 24, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5773-5788
- MSC (2010): Primary 44A60, 14P99
- DOI: https://doi.org/10.1090/S0002-9947-2011-05225-6
- MathSciNet review: 2817409