Normality and repelling periodic points
HTML articles powered by AMS MathViewer
- by Jianming Chang and Lawrence Zalcman
- Trans. Amer. Math. Soc. 363 (2011), 5721-5744
- DOI: https://doi.org/10.1090/S0002-9947-2011-05280-3
- Published electronically: June 17, 2011
- PDF | Request permission
Abstract:
Let $k\geq 3(\geq 2)$ be an integer and $\mathcal {F}$ be a family of functions meromorphic in a domain $D\subset \mathbb {C}$, all of whose poles have multiplicity at least 2 (at least 3). If in $D$ each $f\in \mathcal {F}$ has neither repelling fixed points nor repelling periodic points of period $k$, then $\mathcal {F}$ is a normal family in $D$. Examples are given to show that the conditions on poles are necessary and sharp.References
- I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622. MR 169989, DOI 10.1112/jlms/s1-39.1.615
- Detlef Bargmann and Walter Bergweiler, Periodic points and normal families, Proc. Amer. Math. Soc. 129 (2001), no. 10, 2881–2888. MR 1840089, DOI 10.1090/S0002-9939-01-05864-6
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4 [4]4 W. Bergweiler, Periodische Punkte bei der Iteration ganzer Funktionen, Habilitationsschrift, Rheinisch-Westfälische Techn. Hochsch., Aachen, 1991.
- Walter Bergweiler, An introduction to complex dynamics, Textos de Matemática. Série B [Texts in Mathematics. Series B], vol. 6, Universidade de Coimbra, Departamento de Matemática, Coimbra, 1995. MR 1626031
- Walter Bergweiler, Ahlfors theory and complex dynamics: periodic points of entire functions, Sūrikaisekikenkyūsho K\B{o}kyūroku 1269 (2002), 1–11. Complex dynamics and related fields (Japanese) (Kyoto, 2001). MR 1953889
- Walter Bergweiler and Norbert Terglane, Weakly repelling fixpoints and the connectivity of wandering domains, Trans. Amer. Math. Soc. 348 (1996), no. 1, 1–12. MR 1327252, DOI 10.1090/S0002-9947-96-01511-5
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Jianming Chang, Polynomials without repelling periodic point of given period, J. Math. Anal. Appl. 324 (2006), no. 1, 1–13. MR 2262451, DOI 10.1016/j.jmaa.2005.11.075
- Jianming Chang, Normality, quasinormality and periodic points, Nagoya Math. J. 195 (2009), 77–95. MR 2552954, DOI 10.1017/S0027763000009715
- Jianming Chang and Mingliang Fang, Normal families and fixed points, J. Anal. Math. 95 (2005), 389–395. MR 2145570, DOI 10.1007/BF02791508
- Jianming Chang and Mingliang Fang, Repelling periodic points of given periods of rational functions, Sci. China Ser. A 49 (2006), no. 9, 1165–1174. MR 2284204, DOI 10.1007/s11425-006-2008-2
- Jianming Chang, Mingliang Fang, and Lawrence Zalcman, Normality and attracting fixed points, Bull. Lond. Math. Soc. 40 (2008), no. 5, 777–788. MR 2439643, DOI 10.1112/blms/bdn056
- Matts Essén and Shengjian Wu, Fix-points and a normal family of analytic functions, Complex Variables Theory Appl. 37 (1998), no. 1-4, 171–178. MR 1687872, DOI 10.1080/17476939808815130
- Matts Essén and Shengjian Wu, Repulsive fixpoints of analytic functions with applications to complex dynamics, J. London Math. Soc. (2) 62 (2000), no. 1, 139–148. MR 1771857, DOI 10.1112/S0024610700001149
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- Xuecheng Pang, Shared values and normal families, Analysis (Munich) 22 (2002), no. 2, 175–182. MR 1916423, DOI 10.1524/anly.2002.22.2.175
- Xuecheng Pang and Lawrence Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325–331. MR 1750485, DOI 10.1112/S002460939900644X
- Joel L. Schiff, Normal families, Universitext, Springer-Verlag, New York, 1993. MR 1211641, DOI 10.1007/978-1-4612-0907-2
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
- Norbert Steinmetz, Rational iteration, De Gruyter Studies in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1993. Complex analytic dynamical systems. MR 1224235, DOI 10.1515/9783110889314
- Lo Yang, Some recent results and problems in the theory of value-distribution, Proceedings Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990) Notre Dame Math. Lectures, vol. 12, Univ. Notre Dame Press, Notre Dame, IN, 1992, pp. 157–171. MR 1243023
- Lo Yang, Value distribution theory, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993. Translated and revised from the 1982 Chinese original. MR 1301781
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), no. 8, 813–817. MR 379852, DOI 10.2307/2319796
- Lawrence Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 215–230. MR 1624862, DOI 10.1090/S0273-0979-98-00755-1
Bibliographic Information
- Jianming Chang
- Affiliation: Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, People’s Republic of China
- Email: jmchang@cslg.edu.cn
- Lawrence Zalcman
- Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
- Email: zalcman@macs.biu.ac.il
- Received by editor(s): September 6, 2009
- Published electronically: June 17, 2011
- Additional Notes: The research of the first author was supported by NNSF of China (Grant No. 10871094), NSFU of Jiangsu, China (Grant No. 08KJB110001), Qinglan Project of Jiangsu, China, and the SRF for ROCS, SEM.
The research of the second author was supported by Israel Science Foundation Grant 395/07. This work is part of the European Science Foundation Networking Programme HCAA. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5721-5744
- MSC (2000): Primary 30D45, 30D05, 37F10, 37C25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05280-3
- MathSciNet review: 2817406