Higher bivariant Chow groups and motivic filtrations
HTML articles powered by AMS MathViewer
- by Abhishek Banerjee
- Trans. Amer. Math. Soc. 363 (2011), 5943-5969
- DOI: https://doi.org/10.1090/S0002-9947-2011-05300-6
- Published electronically: May 25, 2011
- PDF | Request permission
Abstract:
The purpose of this paper is twofold: first, we extend Saito’s filtration on Chow groups, which is a candidate for the conjectural Bloch Beilinson filtration on the Chow groups of a smooth projective variety, from Chow groups to the bivariant Chow groups. In order to do this, we construct cycle class maps from the bivariant Chow groups to bivariant cohomology groups. Secondly, we use our methods to define a bivariant version of Bloch’s higher Chow groups.References
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI 10.1007/BFb0078364
- Bloch, S. Some notes on elementary properties of higher Chow groups, including functoriality properties and cubical Chow groups. Preprint.
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Jean-Paul Brasselet, Jörg Schürmann, and Shoji Yokura, On Grothendieck transformations in Fulton-MacPherson’s bivariant theory, J. Pure Appl. Algebra 211 (2007), no. 3, 665–684. MR 2344222, DOI 10.1016/j.jpaa.2007.03.004
- Jean-Paul Brasselet, Jörg Schürmann, and Shoji Yokura, On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations, Adv. Math. 210 (2007), no. 2, 797–812. MR 2303240, DOI 10.1016/j.aim.2006.07.014
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Fulton and Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165. MR 609831, DOI 10.1090/memo/0243
- Victor Ginzburg, Geometric methods in the representation theory of Hecke algebras and quantum groups, Representation theories and algebraic geometry (Montreal, PQ, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183. Notes by Vladimir Baranovsky [V. Yu. Baranovskiĭ]. MR 1649626
- V. Ginsburg, ${\mathfrak {G}}$-modules, Springer’s representations and bivariant Chern classes, Adv. in Math. 61 (1986), no. 1, 1–48. MR 847727, DOI 10.1016/0001-8708(86)90064-2
- Shuji Saito, Motives and filtrations on Chow groups. II, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 321–346. MR 1744952
- Shuji Saito, Motives and filtrations on Chow groups, Invent. Math. 125 (1996), no. 1, 149–196. MR 1389964, DOI 10.1007/s002220050072
- Shoji Yokura, On Ginzburg’s bivariant Chern classes. II, Geom. Dedicata 101 (2003), 185–201. MR 2017902, DOI 10.1023/A:1026372313430
- Shoji Yokura, On Ginzburg’s bivariant Chern classes, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2501–2521. MR 1974000, DOI 10.1090/S0002-9947-03-03252-5
Bibliographic Information
- Abhishek Banerjee
- Affiliation: Institut des Hautes Études Scientifiques, Le Bois-Marie 35, Route de Chartres 91440, Bures sur Yvette, France
- Address at time of publication: Department of Mathematics, Ohio State University, 231 W. 18th Avenue, 100 Math Tower, Columbus, Ohio 43210
- Email: abhishekbanerjee1313@gmail.com
- Received by editor(s): September 19, 2009
- Received by editor(s) in revised form: January 16, 2010
- Published electronically: May 25, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 5943-5969
- MSC (2010): Primary 14C15, 14C25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05300-6
- MathSciNet review: 2817416