A Fourier transform approach to Christoffel’s problem
HTML articles powered by AMS MathViewer
- by Paul Goodey, Vladyslav Yaskin and Maryna Yaskina
- Trans. Amer. Math. Soc. 363 (2011), 6351-6384
- DOI: https://doi.org/10.1090/S0002-9947-2011-05267-0
- Published electronically: July 26, 2011
- PDF | Request permission
Abstract:
We use Fourier transform techniques to provide a new approach to Berg’s solution of the Christoffel problem. This leads to an explicit description of Berg’s spherical kernel and to new regularity properties of the associated integral transform.References
- A. D. Aleksandrov, Über die Frage nach der Existenz eines Körpers bei dem die Summe der Hauptkrümmungsradien eine gegebene positive Funktion ist, welche die Bedingungen der Geschlossenheit genügt, Doklady Akad. Nauk 14 (1937), 59–60.
- A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (in Russian), Mat. Sbornik N.S. 2 (1937), 1205–1238.
- A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, III. Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beleibige konvexe Flächen (in Russian), Mat. Sbornik N.S. 3 (1938), 27–46.
- Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French). MR 254789
- Herbert Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. MR 0105155
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- E. B. Christoffel, Über die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. für die Reine und Angewandte Math. 64 (1865), 193–209.
- W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938).
- W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967), 1–13. MR 217699, DOI 10.1112/S0025579300007956
- William J. Firey, Christoffel’s problem for general convex bodies, Mathematika 15 (1968), 7–21. MR 230259, DOI 10.1112/S0025579300002321
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Herman Gluck, Manifolds with preassigned curvature—a survey, Bull. Amer. Math. Soc. 81 (1975), 313–329. MR 367861, DOI 10.1090/S0002-9904-1975-13740-2
- Paul Goodey and Wolfgang Weil, Centrally symmetric convex bodies and the spherical Radon transform, J. Differential Geom. 35 (1992), no. 3, 675–688. MR 1163454
- Paul Goodey, Vladyslav Yaskin, and Maryna Yaskina, Fourier transforms and the Funk-Hecke theorem in convex geometry, J. Lond. Math. Soc. (2) 80 (2009), no. 2, 388–404. MR 2545259, DOI 10.1112/jlms/jdp035
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, Cambridge, 1996. MR 1412143, DOI 10.1017/CBO9780511530005
- Bo Guan and Pengfei Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655–673. MR 1933079, DOI 10.2307/3597202
- Pengfei Guan, Changshou Lin, and Xi’nan Ma, The Christoffel-Minkowski problem. II. Weingarten curvature equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 595–614. MR 2273800, DOI 10.1007/s11401-005-0575-0
- Pengfei Guan and Xi-Nan Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553–577. MR 1961338, DOI 10.1007/s00222-002-0259-2
- Pengfei Guan and Xi-Nan Ma, Convex solutions of fully nonlinear elliptic equations in classical differential geometry, Geometric evolution equations, Contemp. Math., vol. 367, Amer. Math. Soc., Providence, RI, 2005, pp. 115–127. MR 2115755, DOI 10.1090/conm/367/06751
- Pengfei Guan, Xi-Nan Ma, and Feng Zhou, The Christofel-Minkowski problem. III. Existence and convexity of admissible solutions, Comm. Pure Appl. Math. 59 (2006), no. 9, 1352–1376. MR 2237290, DOI 10.1002/cpa.20118
- Markus Kiderlen, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. J. 57 (2008), no. 5, 1999–2038. MR 2463960, DOI 10.1512/iumj.2008.57.3348
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- Emanuel Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2006), no. 2, 530–567. MR 2261694, DOI 10.1016/j.jfa.2006.04.004
- H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198–219. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, 103–121.
- Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447–495 (German). MR 1511220, DOI 10.1007/BF01445180
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 0478079
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Rolf Schneider, Das Christoffel-Problem für Polytope, Geometriae Dedicata 6 (1977), no. 1, 81–85 (German). MR 470865, DOI 10.1007/BF00181582
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Weimin Sheng, Neil Trudinger, and Xu-Jia Wang, Convex hypersurfaces of prescribed Weingarten curvatures, Comm. Anal. Geom. 12 (2004), no. 1-2, 213–232. MR 2074877
- Wolfgang Weil, On surface area measures of convex bodies, Geom. Dedicata 9 (1980), no. 3, 299–306. MR 585937, DOI 10.1007/BF00181175
Bibliographic Information
- Paul Goodey
- Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
- Email: pgoodey@math.ou.edu
- Vladyslav Yaskin
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- MR Author ID: 650371
- Email: vladyaskin@math.ualberta.ca
- Maryna Yaskina
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: myaskina@math.ualberta.ca
- Received by editor(s): October 27, 2009
- Published electronically: July 26, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 6351-6384
- MSC (2010): Primary 52A20, 42B10, 33C55
- DOI: https://doi.org/10.1090/S0002-9947-2011-05267-0
- MathSciNet review: 2833558