Estimates for invariant metrics on $\mathbb C$-convex domains
HTML articles powered by AMS MathViewer
- by Nikolai Nikolov, Peter Pflug and Włodzimierz Zwonek
- Trans. Amer. Math. Soc. 363 (2011), 6245-6256
- DOI: https://doi.org/10.1090/S0002-9947-2011-05273-6
- Published electronically: June 27, 2011
- PDF | Request permission
Abstract:
Geometric lower and upper estimates are obtained for invariant metrics on $\mathbb C$-convex domains containing no complex lines.References
- Mats Andersson, Mikael Passare, and Ragnar Sigurdsson, Complex convexity and analytic functionals, Progress in Mathematics, vol. 225, Birkhäuser Verlag, Basel, 2004. MR 2060426, DOI 10.1007/978-3-0348-7871-5
- E. Bedford and S. I. Pinchuk, Convex domains with noncompact groups of automorphisms, Mat. Sb. 185 (1994), no. 5, 3–26 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 1, 1–20. MR 1275970, DOI 10.1070/SM1995v082n01ABEH003550
- S. Blumberg, Das Randverhalten der Bergman-Kerns und der Bergman-Metrik auf lineal konvexe Gebieten endlichen Typs, Dissertation, Universität Wuppertal, 2005.
- Harold P. Boas and Emil J. Straube, On equality of line type and variety type of real hypersurfaces in $\textbf {C}^n$, J. Geom. Anal. 2 (1992), no. 2, 95–98. MR 1151753, DOI 10.1007/BF02921382
- Harold P. Boas, Emil J. Straube, and Ji Ye Yu, Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), no. 3, 449–461. MR 1357618, DOI 10.1307/mmj/1029005306
- J.-H. Chen, Estimates of invariant metrics on convex domains, Ph.D. Thesis, Purdue University, 1989.
- M. Conrad, Nicht isotrope Abschätzungen für lineal konvexe Gebiete endlichen Typs, Dissertation, Universität Wuppertal, 2002.
- Klas Diederich and Gregor Herbort, Pseudoconvex domains of semiregular type, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 127–161. MR 1319347
- Klas Diederich and John Erik Fornæss, Lineally convex domains of finite type: holomorphic support functions, Manuscripta Math. 112 (2003), no. 4, 403–431. MR 2064651, DOI 10.1007/s00229-003-0418-9
- T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note Series, vol. 32, Cambridge University Press, Cambridge-New York, 1978. MR 521440
- Torsten Hefer, Hölder and $L^p$ estimates for $\overline \partial$ on convex domains of finite type depending on Catlin’s multitype, Math. Z. 242 (2002), no. 2, 367–398. MR 1980628, DOI 10.1007/s002090100338
- Torsten Hefer, Extremal bases and Hölder estimates for $\overline \partial$ on convex domains of finite type, Michigan Math. J. 52 (2004), no. 3, 573–602. MR 2097399, DOI 10.1307/mmj/1100623414
- Gregor Herbort, On the Bergman metric near a plurisubharmonic barrier point, Complex analysis and geometry (Paris, 1997) Progr. Math., vol. 188, Birkhäuser, Basel, 2000, pp. 123–132. MR 1782663
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- David Jacquet, $\Bbb C$-convex domains with $C^2$ boundary, Complex Var. Elliptic Equ. 51 (2006), no. 4, 303–312. MR 2218722, DOI 10.1080/17476930600585738
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- Lina Lee, Asymptotic behavior of the Kobayashi metric on convex domains, Pacific J. Math. 238 (2008), no. 1, 105–118. MR 2443509, DOI 10.2140/pjm.2008.238.105
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- M. Lieder, Das Randverhalten der Kobayashi und Carathéodory-Metrik auf lineal konvexe Gebieten endlichen Typs, Dissertation, Universität Wuppertal, 2005.
- Jeffery D. McNeal, Convex domains of finite type, J. Funct. Anal. 108 (1992), no. 2, 361–373. MR 1176680, DOI 10.1016/0022-1236(92)90029-I
- Jeffery D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), no. 1, 108–139. MR 1302759, DOI 10.1006/aima.1994.1082
- Jeffery D. McNeal, Invariant metric estimates for $\overline \partial$ on some pseudoconvex domains, Ark. Mat. 39 (2001), no. 1, 121–136. MR 1821085, DOI 10.1007/BF02388794
- N. Nikolov, Nontangential weighted limit of the infinitesimal Carathéodory metric in an $h$-extendible boundary point of a smooth bounded pseudoconvex domain in $\textbf {C}^n$, Acta Math. Hungar. 82 (1999), no. 4, 311–324. MR 1675619, DOI 10.1023/A:1006640309009
- Nikolai Nikolov, Localization of invariant metrics, Arch. Math. (Basel) 79 (2002), no. 1, 67–73. MR 1923040, DOI 10.1007/s00013-002-8286-1
- Nikolai Nikolov and Peter Pflug, Behavior of the Bergman kernel and metric near convex boundary points, Proc. Amer. Math. Soc. 131 (2003), no. 7, 2097–2102. MR 1963755, DOI 10.1090/S0002-9939-03-07030-8
- Nikolai Nikolov and Peter Pflug, Estimates for the Bergman kernel and metric of convex domains in $\Bbb C^n$, Ann. Polon. Math. 81 (2003), no. 1, 73–78. MR 1977762, DOI 10.4064/ap81-1-6
- N. Nikolov, P. Pflug, P. J. Thomas, W. Zwonek, On a local characterization of pseudoconvex domains, Indiana Univ. Math. J. 58 (2009), to appear.
- Nikolai Nikolov, Peter Pflug, and Włodzimierz Zwonek, An example of a bounded $\textbf {C}$-convex domain which is not biholomorphic to a convex domain, Math. Scand. 102 (2008), no. 1, 149–155. MR 2420684, DOI 10.7146/math.scand.a-15056
- Alan V. Noell, Peak points in boundaries not of finite type, Pacific J. Math. 123 (1986), no. 2, 385–390. MR 840849
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299–319 (French). MR 894582, DOI 10.1215/S0012-7094-87-05516-5
- Ji Ye Yu, Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992), no. 3, 837–849. MR 1189914, DOI 10.1512/iumj.1992.41.41044
- Ji Ye Yu, Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295. MR 1322619, DOI 10.1512/iumj.1994.43.43055
- Ji Ye Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587–614. MR 1276938, DOI 10.1090/S0002-9947-1995-1276938-5
- Ji Ye Yu, Singular Kobayashi metrics and finite type conditions, Proc. Amer. Math. Soc. 123 (1995), no. 1, 121–130. MR 1231046, DOI 10.1090/S0002-9939-1995-1231046-X
- S. V. Znamenskiĭ and L. N. Znamenskaya, Projective convexity in $\mathbf C\textrm {P}^n$, Sibirsk. Mat. Zh. 38 (1997), no. 4, 790–806, ii (Russian, with Russian summary); English transl., Siberian Math. J. 38 (1997), no. 4, 685–698. MR 1474912, DOI 10.1007/BF02674574
Bibliographic Information
- Nikolai Nikolov
- Affiliation: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- MR Author ID: 332842
- Email: nik@math.bas.bg
- Peter Pflug
- Affiliation: Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany
- MR Author ID: 139035
- Email: peter.pflug@uni-oldenburg.de
- Włodzimierz Zwonek
- Affiliation: Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
- Email: Wlodzimierz.Zwonek@im.uj.edu.pl
- Received by editor(s): December 15, 2008
- Received by editor(s) in revised form: September 16, 2009
- Published electronically: June 27, 2011
- Additional Notes: This paper was written during the stay of the first-named author at the Carl von Ossietzky Universität Oldenburg (November-December 2008) supported by the DFG grant 436POL113/103/0-2. The third-named author was supported by the research grant No. N N201 361436 of the Polish Ministry of Science and Higher Education.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 6245-6256
- MSC (2010): Primary 32F45, 32A25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05273-6
- MathSciNet review: 2833552