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n-REPRESENTATION-FINITE ALGEBRAS
AND n-APR TILTING

OSAMU IYAMA AND STEFFEN OPPERMANN

ABSTRACT. We introduce the notion of n-representation-finiteness, generaliz-
ing representation-finite hereditary algebras. We establish the procedure of
n-APR tilting and show that it preserves n-representation-finiteness. We give
some combinatorial description of this procedure and use this to completely
describe a class of n-representation-finite algebras called “type A”.
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1. INTRODUCTION

One of the highlights in representation theory of algebras is given by representa-
tion-finite algebras, which provide a prototype of the use of functorial methods
in representation theory. In 1971, Auslander gave a one-to-one correspondence
between representation-finite algebras and Auslander algebras, which was a mile-
stone in modern representation theory that later led to Auslander-Reiten theory.
Many categorical properties of module categories can be understood as analogues
of homological properties of Auslander algebras, and vice versa.

To study higher Auslander algebras, the notion of n-cluster tilting subcategories
(=maximal (n—1)-orthogonal subcategories) was introduced in [[ya3], and a higher
analogue of Auslander-Reiten theory was developed in a series of papers [Iyall [Tya2,
IOI; see also the survey paper [Iyad]. Recent results (in particular [Iyal], but also
this paper and [HI, HZ1, [HZ2, [HZ3] TO]) suggest that n-cluster tilting modules
behave very nicely if the algebra has global dimension n. In this paper, we call
such algebras n-representation-finite and study them from the viewpoint of APR
(=Auslander-Platzeck-Reiten) tilting theory (see [APR]).

For the case n = 1, l-representation-finite algebras are representation-finite
hereditary algebras. In the representation theory of path algebras, the notion of
Bernstein-Gelfand-Ponomarev reflection functors plays an important role. Nowa-
days they are formulated in terms of APR tilting modules from a functorial view-
point (see [APR]). A main property is that the class of representation-finite heredi-
tary algebras is closed under taking endomorphism algebras of APR tilting modules.
By iterating the APR tilting process, we get a family of path algebras with the same
underlying graph with different orientations

We follow this idea to construct from one given n-representation-finite algebra
a family of n-representation-finite algebras. We introduce the general notion of
n-APR tilting modules, which are explicitly constructed tilting modules associated
with simple projective modules. The difference from the case n = 1 is that we need
a certain vanishing condition of extension groups, but this is always satisfied if A
is n-representation-finite.

In Section Bl we introduce n-APR tilting. We first introduce n-APR tilting
modules. We give descriptions of the n-APR tilted algebra in terms of one-point
(co)extensions (see Subsection B2 in particular Theorem B.g]), and for n = 2 also
in terms of quivers with relations (see Subsection [33] in particular Theorem B.IT]).
Finally we introduce n-APR tilting in derived categories.

In Section @] we apply n-APR tilts to n-representation-finite algebras. The
first main result is that n-APR tilting preserves n-representation-finiteness (The-
orems and 7). In Subsections 3] and B4 we introduce the notions of slices
and admissible sets in order to gain a better understanding as to which algebras
are iterated n-APR tilts of a given n-representation-finite algebra. More precisely
we show that the iterated n-APR tilts are precisely the quotients of an explicitly
constructed algebra by admissible sets (Theorem [£.23)).

As an application of our general n-APR tilting theory, in Section [l we give
a family of m-representation-finite algebras by an explicit quivers with relations,
which are iterated n-APR tilts of higher Auslander algebras given in [Iyal]. We
call them n-representation-finite algebras of type A, since, for the case n = 1, they
are path algebras of type A, with arbitrary orientation. As shown in Section Ml in
general, they form a family indexed by admissible sets. In contrast to the general
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setup, for type A we have a very simple combinatorial description of admissible sets
(we call sets satisfying this description ‘cuts’ until we can show that they coincide
with admissible sets; see Definition [5:3] and Remark [B.13]). Then the n-APR tilting
process can be written purely combinatorially in terms of ‘mutation’ of admissible
sets, and we can give a purely combinatorial proof of the fact that all admissible
sets are transitive under successive mutation.

Summing up with results in [IO], we obtain self-injective weakly (n+1)-represen-
tation-finite algebras as (n + 1)-preprojective algebras of n-representation-finite
algebras of type A. This is a generalization of a result of Geiss, Leclerc, and Schréer
[GLST], saying that preprojective algebras of type A are weakly 2-representation-
finite.

2. BACKGROUND AND NOTATION

Throughout this paper we assume A to be a finite dimensional algebra over
some field k. We denote by mod A the category of finite dimensional A-modules
(all modules are left modules).

2.1. n-representation-finiteness.

Definition 2.1 (see [Iyal]). A module M € modA is called an n-cluster tilting
object if
add M = {X € mod A | Ext)y (M, X)=0Vie {1,...,n—1}}
= {X €modA | Ext)(X,M)=0Vie {1,...,n—1}}.
Clearly such an M is a generator-cogenerator and is n-rigid in the sense that
Exty(M,M)=0Vie {1,...,n—1}.
Note that a 1-cluster tilting object is just an additive generator of the module

category.

Definition 2.2. Let A be a finite dimensional algebra. We say A is weakly n-
representation-finite if there exists an n-cluster tilting object in mod A. If moreover
gl.dim A < n, we say that A is n-representation-finite.

The main aim of this paper is to better understand n-representation-finite alge-
bras and to construct larger families of examples.
For n > 1 we define the following functors:

Tr,, == TrQ" !: mod A <—> mod A°P,
Tp := D Tr,: mod A—> mod A,
7, =1Tr, D: mod A—> mod A.
(See [ARS] for definitions and properties of the functors Tr, D, and 71.)

Proposition 2.3 ([Iya3]). Let M be an n-cluster tilting object in mod A.

e We have an equivalence 7,: add M — add M with a quasi-inverse
77 : add M — add M.

e We have functorial isomorphisms Hom,(7,Y,X) = DExti(X,Y)
=~ Homy (Y, 7,X) for any X,Y € add M.

o Ifgl.dim A <n, then add M = add{r,,*A | i € N} = add{r! DA | i € N}.
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We have the following criterion for n-representation-finiteness:

Proposition 2.4 ([Iya3] Theorem 5.1(3)]). Let A be a finite dimensional algebra
and n > 1. Let M be an n-rigid generator-cogenerator. The following conditions
are equivalent.

(1) M is an n-cluster tilting object in mod A.
(2) gl.dimEnda (M) <n+1.
(3) For any indecomposable object X € add M, there exists an exact sequence

f
0 M, Mo X

with M; € add M and a right almost split map f in add M.

2.2. Derived categories and n-cluster tilting. Let A be a finite dimensional
algebra of finite global dimension. We denote by
Dp :=D"(mod A)
the bounded derived category of mod A. We denote by
v:=DA®% — = DRHomy(—,A): Dy ——>Dax
the Nakayama-functor in Dy. Clearly v restricts to the usual Nakayama functor
v: add A ——> add DA.
We denote by v, the n-th desuspension of v, that is, v, = v[—n].
Note that if gl.dim A < n, then 7;F = HO(vF-).
We set ‘
U=UY :=add{v,A|i€Z} CDy.

Theorem 2.5 ([Iyall Theorem 1.23]). Let A be an algebra of gl.dim A < n such
that 7,,°A = 0 for sufficiently large i. Then the category U is an n-cluster tilting
subcategory of Dy .

In particular, if A is n-representation-finite, then U is n-cluster tilting.

We have the following criterion for n-representation-finiteness in terms of the
derived category:

Theorem 2.6 ([IO, Theorem 3.1]). Let A be an algebra with gl.dim A < n. Then
the following are equivalent.

(1) A is n-representation-finite,

(2) DA €U,

3) vU =U.

2.3. n-Amiot-cluster categories and (n + 1)-preprojective algebras.

Definition 2.7 (see [Amill [Ami2]). We denote by Dy /v, the orbit category, that
is, 06 D /vy, = 06Dy, and

Homp, ,, (X,Y) = @ Homp, (X, ,Y).
i€Z
We denote by C} the n-Amiot-cluster category, that is, the triangulated hull (see
[AmiTl [Ami2]; we do not give a definition because for the purposes in this paper
it does not matter if we think of the orbit category or the m-Amiot-cluster cate-
gory). We denote by m: Dy —C} the functor induced by projection onto the orbit
category.
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Lemma 2.8 (Amiot [Amill [Ami2]). Let A be an algebra with gl.dim A < n. The
n-Amiot-cluster category Cy is Hom-finite if and only if 7,,'A = 0 for sufficiently
large i.

In particular, it is Hom-finite for any n-representation-finite algebra.

Theorem 2.9 (Amiot [Amill [Ami2]). Let A be an algebra with gl.dim A < n such
that C} is Hom-finite. Then wA is an n-cluster tilting object in C}.

Observation 2.10. Note that addwA is the image of & under the functor of
the derived category to the n-Amiot-cluster category as indicated in the following
diagram:

u add 7(A)
Dy u cn.

Definition 2.11. Let A be an algebra with gl.dim A < n. The (n+1)-preprojective
algebra A of A is the tensor algebra of the bimodule Ext} (DA, A) over A:

~

A :=Txp Ext) (DA, A).
(See [Kell] or [Kel3] for a motivation for this name.)

Proposition 2.12. The (n+ 1)-preprojective algebra A s isomorphic to the endo-
morphism ring
Endp, ,, (A) = Endep (7A).

Proof. The proof of [Ami2, Proposition 5.2.1] or [Amill Proposition 4.7] carries
over. (]

3. n-APR TILTING

In this section we introduce n-APR tilting and prove some general properties.

In Subsection Bl we introduce the notion of (weak) n-APR tilting modules and
study their basic properties.

In Subsection [3:2] we will give a concrete description of the n-APR tilted algebra
in terms of one-point (co)extensions. Namely, if A is a one-point coextension of
Enda(Q)°P by a module M, then the n-APR tilt is the one-point extension of
Enda (Q)°P by Tr,_1 M. This result will allow us to give an explicit description of
the quivers and relations in case n = 2 in Subsection 3.3

Finally, in Subsection [3.4] we introduce a version of APR tilting in the language
of derived categories.

3.1. n-APR tilting modules.

Definition 3.1. Let A be a basic finite dimensional algebra and n > 1. Let P be
a simple projective A-module satisfying Ext}y (DA, P) = 0 for any 0 < i < n. We
decompose A = P @ ). We call

T:=(1r, P)®Q

the weak n-APR tilting module associated with P. If moreover id P = n, then we
call T an n-APR tilting module and we call Enda (T)°P an n-APR tilt of A.
Dually we define (weak) n-APR cotilting modules.
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The more general notion of n-BB tilting modules has been introduced in [HX].
The following result shows that weak n-APR tilting modules are in fact tilting
A-modules.

Theorem 3.2. Let A be a basic finite dimensional algebra, and let T be a weak
n-APR tilting A-module (as in Definition B1l). Then T is a tilting A-module with
pdp T =n.
We also have the following useful properties.
Proposition 3.3. Let T = (7,, P) ® Q be a weak n-APR tilting A-module. Then:
(1) Ext’y(T,A) =0 for any 0 < i < n.
(2) If moreover T is n-APR tilting, then Homy (7,7 P,A) = 0.

For the proof of Theorem and Proposition 3.3l we use the following observa-
tion on tilting mutation due to Riedtmann-Schofield [RS].

Lemma 3.4 (Riedtmann-Schofield [RS]). Let T' be a A-module and

g f
Y——T —> X

be an exact sequence with T' € addT. Then the following conditions are equivalent.

o T® X is a tilling A-module and f is a right (add T)-approzimation.
e TP®Y is a tilting A-module and g is a left (add T')-approzimation.

Proof of Theorem and Proposition [3.3l Take a minimal injective resolution

g
(1) 0 P Iy e I, 1.
Applying D, we have an exact sequence
Dy
(2) DI, DI, e DI, DP 0.

Applying the functor (—)* = Homper (—, A) to this projective resolution of DP, we
obtain a complex

By definition the homology in its rightmost term is 7,, P, and since Exty (DA, P) =
0 for 0 < 4 < n all other homologies vanish. Since (DIp)* is an indecomposable
projective A-module with top(DIy)* = Soc Iy = P, we have (DIy)* = P. Thus we
have an exact sequence

(Dg)* f
(3) 0——>P——>(DL)*—> -+ —> (DI,,)* ——> 1, P ——0.
So we have pd AT = n. Since P is a simple projective A-module, we have (DI;)* €
add @ for 0 < ¢ < n.

Applying the functor (—)* to the sequence (@), we have an exact sequence (2).
Thus we have Proposition B3|(1). If id P = n, then g in () is surjective and Dg in
@) is injective. Since (Dg)** = Dg we have

Homy (7,, P,A) = (7,, P)* = (Cok(Dg)*)* = Ker(Dg)** = Ker Dg = 0.
Thus we have Proposition B:3(2).
Note that we have a functorial isomorphism

Homy (D))", —) = (DI;) @4 —.
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Applying the functors —®4 Q and Homp (—, Q) to sequences [2]) and (B]) respectively,
the above isomorphism gives rise to to a commutative diagram

(DI,) ®a Q (DL) ®x Q (DIo) ®a Q
dl dl dl
Homa ((DI,)*,Q) — -+ —> Homy ((DI1)*,Q) —— Homy ((D1p)*,Q) —— 0

0

of exact sequences. Thus (@) is a left (add Q)-approximation sequence of P, and
we have that T is a tilting A-module by using Lemma [B4] repeatedly. O

We recall the following result from tilting theory [Hap|: For a tilting A-module
T with T" := End (T")°P, we have functors

F := RHomy(T,—): Dy — Dr,
F; := Ext} (T, —): mod A— modT' (i >0).

Put
Fi = {X €mod A | Ext\(T,X) =0 forany j # i},
X, :={Y € modT | Tor?(T, Y)=0 for any j #i}.
Lemma 3.5 (Happel [Hap]). e F = RHomu(T,—): Dy —Dr is an equiv-

alence.

e For any i > 0, we have an equivalence F; := BExt’ (T, —): F; — X; which
is isomorphic to the restriction of [i] o F.

o For any X € Fy, there exists an exact sequence

0 T, To X 0

with T; € add T and m < gl.dim A.

We now prove the following result which says that the class of algebras of global
dimension at most n is closed under n-APR tilting.

Proposition 3.6. If gl.dimA = n and T is an n-APR tilting A-module, then
gl.dimT = n holds for T := End (T)°P.

Proof. We only have to show that pd(top FoX) < n for any indecomposable X €
addT.

(i) First we consider the case X € add Q. Since gl.dimA = n, we can take a
minimal projective resolution

f
0 P, P, X top X —0.

Since Homy (7,, P, A) = 0 by Proposition[3.3|(2), we have that any morphism 7'— X
which is not a split epimorphism factors through f.
Applying Homy (T, —), we have an exact sequence

Fof
Oi’F()Pn FOP1 F()X

since we have Ext) (T, A) = 0 for any 0 < i < n by Proposition33(1). Moreover the
above observation implies Cok Fy f = top FoX. Thus we have pdr(topFoX) < n.
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(ii) Next we consider the case X = 7, P. We will show that pd(top Fo7,, P) is
precisely n. Applying Fy to the sequence ([B]) in the proof of Theorem 3.2 we have
an exact sequence

. o
OZF()P*’Fo(Dfl) > *’Fo(DIn) *’F()Tnp
since we have Exth (T, A) = 0 for any 0 < i < n by Proposition B3(1).

Since @, (DI,)*, and 7,, P are in Fy, we have a commutative diagram

Homrp (FoQ,Fo(DI,)*) Fof

2l
Homy (Q, (DI,,)*)

HOIHF(F()Q, F()TTL_P)
2l
Homy (Q, 1,, P) —— 0

where the lower sequence is exact since @ is a projective A-module. Since

Endr(For,, P) = End(7,, P)

=End, (7, P) (Proposition B:3](2))
>~ Endy (Q~™"YP) (AR-translation)
>~ End, (P) (since Exti (DA, P) =0Vi € {1,...,n—1};

see for instance [AB]),

any non-zero endomorphism of Fy7, P is an automorphism. Thus Fyf is a right
almost split map in add I', and we have Cok F f = top Fo7,, P and pdp(top For,, P)
=n. U

Later we shall use the following observation.

Lemma 3.7. Under the circumstances in Theorem [B.2], we have the following.
(1) PeF,.
(2) F,,P is a simple I'-module. Ifid P = n, then F, P is an injective I'-module.

Proof. (1) follows immediately from Proposition B3] and the fact that P is simple.
(2) By AR-duality we have

F, P = Ext} (T, P) = Exth (T,Q~ ™Y P) =~ DHom, (v, P,T).

First we show that F,, P is a simple I'-module. Since F,, P = DHom, (r,, P,T) =
DEnd, (7,, P), any composition factor of the I'-module F,, P is isomorphic. Thus
we only have to show that Endr(F,, P) is a division ring. By Lemma B35 we have
Endr(F,,P) = Enda (P). Thus the assertion follows.

Next we show the second assertion. Since we have Homy (7,, P, A) = 0 by Propo-
sition B3 we have F,,P = DHom, (r,, P,T) = DHomy(7,, P,T). Thus F,P is an
injective T-module. U

3.2. n-APR tilting as a one-point extension. Let A be a finite dimensional
algebra, M € mod A°? and N € mod A. Slightly more general than “classical” one-
point (co)extensions, we consider the algebras (¥ &) and (¥ ) if K is a finite skew-
field extension of our base field %, such that K C Endper (M) and K C Endy (V)°P,
respectively.

Now let A be a basic algebra which has a simple projective module P. We

set Kp = Enda(P)°P. Let @ be the direct sum over the other indecomposable
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projective A-modules, that is, A = P ® Q. We set Ap := Enda(Q)°? and Mp :=
Homy (P, Q) € mod(Kp®, AY). Then we have an isomorphism A = (7 J){}f), and
P is identified with the module (}%P).

Theorem 3.8. Assume A is a basic finite dimensional algebra with simple projec-
tive module P and that n > 1. Then the following are equivalent:

(i) P gives rise to an n-APR tilting module,
(ii) Mp has the following properties:
° pdA%pMp =n— 1,
Extjor (Mp, Ap) =0 for 0 <i<n—2,
EXtZ;p(MP,Mp) =0for1<i<n-—2and
EndA%p(Mp) = Kp.
Moreover, if the above conditions are satisfied and I' = Enda ((7,, P) ® Q)°P, then

re(
" \Trp,1Mp Ap)-

Remark 3.9. The object Tr,,—1 Mp is uniquely determined only up to projective
summands. In this section we always understand Tr,,_1 Mp to be constructed using
a minimal projective resolution or, equivalently, Tr,,_; Mp to not have any non-zero
projective summands.

Proof of Theorem B3l Let
0 DMP I() Il

be an injective resolution of the Ap-module DMp. Then the injective resolution of
the A-module P = (I%P) is

0

5L

0 Kp Kp 0
0 DMp Iy
Hence pdA;p Mp =idp, DMp =idp P — 1. In particular, we have idy P = n <=
pdA;)Dp Mp =n-—1.
Moreover, for any ¢ > 1 and any I € inj Ap we have
Ext} ((9). P) = Exti;,' (1, DMp)
= BExt'ot (Mp, DI).

op
Ap

(Note that the first equality also holds for ¢ = 1, since there are no non-zero maps
from (9) to the injective A-module (Dﬁjfp).)

Finally we look at extensions between P and the corresponding injective module.
For i > 1 we have

Eth\((DIEP) , P) = EXt?\_l((DIEp) , (piry))
= Ext} ' (DMp, DMp)
= Extj;;é(Mp, Mp).

For 1 = 1 we obtain

Extr((paf,) » P) = Homa((537,) - (pir))/ (Enda((537,)) - [(pf) = (pire)])
&~ EndAP (Mp)/Kp.

This proves the equivalence of (i) and (ii).
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For the second claim note that by PropositionB.3(2) we have Homy (7,, P, Q) = 0.
Therefore it only remains to verify Homa(Q, 7,, P) = Tr,—1 Mp and End, (7,, P)°P
= Kp. This follows by looking at the injective resolution of P above and applying
D to it to obtain (a projective resolution of) 7, P. O

3.3. Quivers for 2-APR tilts. In this subsection we give an explicit description
of 2-APR tilts in terms of quivers with relations.

Remark 3.10. For comparison, recall the classical case (n = 1): Assume A =
kQ/(R) and the set of relations R is minimal (Vr € R:r ¢ (R \ {r})). Simple
projective modules correspond to sources of (). Let P be a simple projective, and
let i € Qg be the corresponding vertex. Then id P = 1 <= no relation in R involves
a path starting in . In this situation we have

Ap=k[Q\{}]/(R), Mp= @D P, and T =kQ/(R),

a€@Q1
s(a)=t

where @’ is the quiver obtained from ) by reversing all arrows starting in i.

For n = 2 we have to take into account the second cosyzygy of P, which corre-
sponds to relations involving the corresponding vertex of the quiver.

Let A = kQ/(R) be a finite dimensional k-algebra presented by a quiver Q =
(Qo, Q1) with relations R (which is assumed to be a minimal set of relations). Let

P be a simple projective A-module associated to a source i of Q). We define a quiver
Q' = (Qy, Q}) with relations R’ as follows:

Qé):QO;
Q1 ={a€Quls(a) #i} L {r": e(r)—i|r € R, s(r) =i},

where r* is a new arrow associated to each r € R with s(r) = i. We write r € R

with s(r) = as
r= Z arg,

a€Q1
s(a)=1

and define a* € kQ’ for each a € Q; with s(a) =i by
a* = Z ror* € kQ'.
rcR
s(r)=1
Now we define a set R’ of relations on Q' by
R ={reR|s(r)#i}1I{a*: e(a)—i|a € Q1, s(a) =1}.

Theorem 3.11. Let A = kQ/(R) and let P be a simple projective A-module. As-
sume that P gives rise to a 2-APR tilting A-module T. Then Enda (T) is isomorphic
to kQ'/(R') (with Q" and R’ as explained above).

Remark 3.12. Roughly speaking, Theorem [3.11] means that arrows in ) starting in
1 become relations and that relations become arrows.

Let us start with the following general observation.



n-REPRESENTATION-FINITE ALGEBRAS AND n-APR TILTING 6585

Observation 3.13. Let A = kQ/(R) be a finite dimensional k-algebra presented
by a quiver @ with relations R. Let M be a A-module with a projective presentation

(Tne)
b p— P, ——>M—0
1<n<N 1<¢<L

for r,¢ € kQ. Then the one-point coextension algebra ( E A) is isomorphic to
k@/(fl) for the quiver Q = (Qvo, @1) with relations R defined by

Qo = Qo 11 {i},
QvlelH{aglig*’illgfgL},
R=RII{ Z roeap | 1 <n < N}
1<e<L
Now we are ready to prove Theorem [3.111
Proof of Theorem BI1l We can write A = (k ]X[;’) as in Subsection Let Qp

be the quiver obtained from @ by removing the vertex i, and let Rp := {r € R |
s(r) #i}. Then we have

(4) Ap = kQp/(Rp).
By Theorem B.8 we have
A
(5) End,(T) = <Tr ]\ZP k) .

Since we have a minimal projective resolution

(ra)
D rioy— D Pl ——Mp——0

r€R a€Q1
5('!‘)=i 5(a):i

of the AP’-module Mp, we have a projective resolution

(ra)
(6) P Pw— P P Tr Mp 0
a€Qq r€ER
s(a)=i s(r)=i
of the A p-module Tr Mp. Applying Observation to the one-point coextension
@), we have the assertion from [{) and (@). O

For example, we could take @ to be the Auslander-Reiten quiver of A3 and R
to be the mesh relations. Then kQ/(R) is the Auslander algebra. See Tables [II
(linear oriented As) and I (non-linear oriented As) for the iterated 2-APR tilts of
these Auslander algebras. In the pictures a downward line is a 2-APR tilt. Vertices
labeled T' are sources that have an associated 2-APR tilt, and vertices labeled C
are sinks having an associated 2-APR cotilt. Sources and sinks that do not admit
a 2-APR tilt or cotilt are marked X.

Note that there are no X’s occurring in Table[Il In fact, by [Iyal, Theorem 1.18]
(see Theorem[57) the Auslander algebras of linear oriented A,, are 2-representation-
finite, and hence every source and sink has an associated 2-APR tilt and cotilt,
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TABLE 1. Iterated 2-APR tilts of the Auslander algebra of linear
oriented As

/\ -\
O AR AVAN I

Ce—0O<«—T

O T

7N\ SN

T c

ffffffffff e L
/N SO

O<—T----C O<«—0<—T

respectively. We will more closely investigate n-APR tilts on n-representation-
finite algebras in Section M and the particular algebras coming from linear oriented
A,, in Section [Bl

3.4. n-APR tilting complexes. As in Section 2.2] throughout this section we
assume A to be a basic finite dimensional algebra of finite global dimension. We will
constantly use the functors v and v,, introduced in the first paragraph of Section[Z.2l

Definition 3.14. Let n > 1, and let A = P & @ be any direct summand decom-
position of the A-module A such that

(1) Homx (@, P) =0 and
(2) Exty(vQ,P) =0 for any 0 < i # n.
Clearly (1) implies Homy (v@, P) = 0, so (2) also holds for ¢ = 0.
We call
Ti= (v, P)©Q

the n-APR tilting complex associated with P.
By abuse of notation (see Remark below for a justification), we also call
Endp, (T)°P an n-APR tilt of A.

Remark 3.15. (1) Any n-APR tilting module (7,; P)® @ in the sense of Defini-
tion Bl is an n-APR tilting complex, since in that case v,, P = 7,; P holds

(under the assumption that A has finite global dimension).
(2) Weak n-APR tilting modules are in general not n-APR tilting complexes.
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TABLE 2. Iterated 2-APR tilts of the Auslander algebra of non-
linear oriented As

N
RV

v
T/ >‘x

v
RV

Remark 3.16. In the setup of Definition B.14] there is no big difference between
tilting and cotilting: The n-APR tilting complex (v,, P) & @ associated to P and
the n-APR cotilting complex vP @ v,,vQ associated to (the injective module) vQ
are mapped to each other by the autoequivalence v, v of the derived category.
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In the rest of this subsection we will show that n-APR tilting complexes are
indeed tilting complexes, and that they preserve the property gl.dim < n.

Theorem 3.17. Let A be an algebra of finite global dimension, and let T be an
n-APR tilting complex (as in Definition BI4l). Then T is a tilting complez in Dy.

Remark 3.18. More generally, in Theorem [3.17]it is possible to replace the assump-
tion that A has finite global dimension by the weaker assumption that P has finite
injective dimension. (In this case v;; P = RHomy (DA, P)[n] is still in KP(projA),
the homotopy category of complexes of finitely generated projective A-modules.)

Proof of Theorem [3.17. We have to check that T' has no self-extensions and that
T generates the derived category Da. We first check that 7" has no self-extensions.
Clearly for all ¢ # 0 we have Homp, (v,, P,v,, P[i]) = 0 and Homp, (Q, Q[i]) = 0.
Moreover

Homp, (v, P, Q[i]) = Homp, (v~ P, Qi — n]) = D Homp, (Q[i — n], P)
=0 VieZ.

Finally Homp, (Q, v;, P[i]) = Ext} T (vQ, P), which vanishes for i # 0 by assump-
tion (2) of the definition.

Now we prove that T" generates Dp. Let X € Dy such that Homp, (v~ P[i], X) =
0 and Homp, (Q[i], X) = 0 for all i. By the latter property we see that the homology
of X does not contain any composition factors in add(top Q). We can assume that

X is a complex
gi-1 . i . gi+t
s Xt s xil =

in KP(proj A), such that Imd* C Rad X**! for any i.

Assume there is an i such that X® ¢ add P. Let ip; be the maximal i with
this property. Let Q' € add @ be a non-zero summand of X*¥. Since X'm+1 ¢
add P by our choice of iys, we have Homy (Q', X 1) € add Homa (Q, P) = 0 (see
Definition B.14(1)). Hence we have Q' C Kerd™. Since Imdi™~1 C Rad X'
we have Q'  Imd*™~! and hence Homp, (Q’, X[irs]) # 0, a contradiction to our
choice of X. Consequently, we have X € KP(add P).

Now we assume X # 0. Let iy be the minimal i such that X* # 0. Since
X'~ € add P we have Homp, (X[iy], P) # 0. This is a contradiction to our choice
of X, since Homp, (X[iy], P) = D Homp, (v,, P, X[n + in]). O

The following result generalizes Proposition to the setup of n-APR tilting
complexes.

Proposition 3.19. If gl.dimA < n and T is an n-APR tilting complex in Dy,
then for T := Endp, (T)°? we have gl.dimT < n.
Proof. By [Ric] the algebra I' has finite global dimension, and hence
gl.dimT = max{i | Exth(vI',T) # 0}
= max{i¢ | Homp, (vT',I'[i]) # 0}
= max{i | Homp, (vT,T[i]) # 0}.
Clearly gl.dimA < n implies that for i > n we have Homp, (vv, P,v, Pli]) =
Exty (vP, P) = 0 and Homp, (vQ, Q[i]) = Ext} (rQ, Q) = 0. We have
Homp, (vv, P, Qli]) = Homp, (P, Qli — n]),
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which is non-zero only for ¢ = n. Finally
Homp, (vQ, v, P[i]) = Homp, (v*Q, Pn + ).

Since ¥@Q € mod A and gl.dim A < n it follows that 2@ has non-zero homology
only in degrees —n,...,0. Hence the above Hom-space vanishes for ¢ > n, since
gl.dim A < n.

Summing up we obtain Homp, (vT, T[i]) = 0 for ¢ > n, which implies the claim
of the theorem by the remark at the beginning of the proof. (]

Recall the definition of the subcategory
Uy =add{v A |i€Z} C Dy
given in Section

Proposition 3.20. Let A be n-representation-finite, and let T be an n-APR tilting
complex in Dy. Let T' := Endp, (T)°P. Then the derived equivalence

RHOIHA(T, —) : DA *"DF
(see [Kel2]) induces an equivalence UY —> UP.

Proof. This is clear since the derived equivalence R Homp (T, —) commutes with v,
and T € U}. O

An application of Proposition [3.20] we will use in Subsection [£.4]is the following.

Proposition 3.21. The (n + 1)-preprojective algebra (see Definition Z111) is in-
variant under n-APR tilts.

Proof. By Propositions [3.20] and 2.12] we have

A = Endyg sy, (A) = Endyy sy, (T) = Endye . (T) =T 0

4. n-APR TILTING FOR n-REPRESENTATION-FINITE ALGEBRAS

In this section we study the effect of n-APR tilts on n-representation-finite al-
gebras.

The first main result is that n-APR tilting preserves n-representation-finiteness
(Theorems and 7). We give two independent proofs for this fact. In Subsec-
tion 1] we study n-APR tilting modules for n-representation-finite algebras. We
give an explicit description of a cluster tilting object in the new module category
in terms of the cluster tilting object of the original algebra (Theorem H.2]). In Sub-
section we give an independent proof (which is less explicit and relies heavily
on a result from [IO]) that the more general procedure of tilting in n-APR tilting
complexes also preserves n-representation-finiteness.

In Subsections [£.3] and [£.4] we introduce the notions of slices and admissible sets,
which classify, for a given n-representation-finite algebra, all iterated n-APR tilts
(see Theorem [23)).

Throughout this section, let A be an n-representation-finite algebra. For sim-
plicity of notation we assume A to be basic.
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4.1. n-APR tilting modules preserve n-representation-finiteness. The fol-
lowing proposition shows that the setup of n-representation-finite algebras is par-
ticularly well-suited for looking at n-APR tilts.

Observation 4.1. (1) Any simple projective and non-injective A-module P
admits an n-APR tilting A-module.
(2) Any simple injective and non-projective A-module I admits an n-APR
cotilting A-module.

Proof. We have id P < n by gl.dim A < n. Since the n-cluster tilting object is an
n-rigid generator-cogenerator, we have Exty (DA, P) = 0 for any 0 < ¢ < n. This
proves (1); the proof of (2) is dual. O

Throughout this subsection, we denote by M the unique basic n-cluster tilting
object in mod A (see the last point of Proposition 2.3]).

Now let P be a simple projective and non-injective A-module. We decompose
A=P®Q. Since P € add M we can also decompose M = P & M'. By Observa-
tion {1l we have an n-APR tilting A-module T := (7,, P) & Q.

Theorem 4.2. Under the above circumstances, we have the following.

(1) T € add M.
(2) T :=Enda(T)°P is an n-representation-finite algebra with n-cluster tilting
object N := Homp (T, M') @ Ext}; (T, P).

Before we prove the theorem let us note the following immediate consequence.

Corollary 4.3. Any iterated n-APR tilt of an n-representation-finite algebra is
n-representation-finite.

In the rest of this subsection we shall show Theorem Assertion (1) follows
immediately from the first part of Proposition 2.3}

Proposition proves that gl.dimI’ = n in Theorem We shall show that
N in Theorem [2](2) is an n-cluster tilting object. We will use the subcategories
Fi € modA and the functors F; which were introduced in Section Bl (see in
particular Lemma [B3]).

Lemma 4.4. M' € F.

Proof. By Theorem [2(1) we know that T' € add M. Hence, since M is an n-rigid
A-module, we have Ext} (T, M) = 0 for any 0 < i < n. Since gl.dimA < n, we
only have to check Exty (T, M’) = 0. Of course, we have Ext}\ (Q, M') = 0 since Q
is projective. By Proposition 23] we have Ext} (7, P, M') = DHomy (M’, P), and
the latter Hom-space vanishes since P is simple projective. (Il

Lemma 4.5. N = FoM' & F,P is an n-rigid I'-module.

Proof. We have Exti(—, F,,P) = 0 for any i > 0 since F,, P is injective (see Lemma
B7(2)). Since M’ € Fy and P € F,, by Lemma[d4 and Lemma [B7|(1) respectively,
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we can check the assertion as follows by using Lemma
Exth(FoM’', FoM') = Homp,. (FM', FM'[i])
= Homp, (M', M'[i])
= Ext (M', M),
Exti(F, P,FoM’') = Homp, (FP[n], FM'[i])
= Homp, (P, M'[i —n])
= Ext’ "(P, M’).
For 0 < i < n both of the above vanish, since M is n-rigid. O
We now complete the proof of Theorem

Proof of Theorem 4.2)(2). By Lemma [£.5] we know that N is n-rigid, and hence we
may apply Proposition 241 We will show that N is n-cluster tilting by checking
the third of the equivalent conditions in Proposition [Z74]3).

(i) First we consider F,, P. Take a minimal injective resolution

0 P I I, 0.

By Proposition B3 we have Exty(T,P) = 0 for 0 < i < n. Hence, applying
Homy (T, —), we have an exact sequence

f
0 Foly e Fol, F.P 0
with Fol; € add N. We shall show that f is a right almost split map in add N.
By Lemma 35 we have Ext].(FoM',FI;) = Ext} (M’, I;) = 0 for any ¢ and any
j > 0. Using this, we see that the map

f
Homp(FoM',FoI,,) —> Homp(FoM', F,, P)

is surjective. Since F,, P is a simple injective A-module by Lemma[3.7], any non-zero
endomorphism of F, P is an automorphism. Thus f is a right almost split map in
add N.

(i) Next we consider FoX for any indecomposable X € add M’. Since M is an
n-cluster tilting object in mod A, we have an exact sequence

f
0 M, M, X

with M; € add M and a right almost split map f in add M by Proposition 24
Applying Fg, we have an exact sequence

Fof
0*’]:?0]\4n*> cee *’F()M()*’F()X
since we have Ext’y (T, M) = 0 for any 0 < i < n. Since FoM; € add N, we only
have to show that Fgf is a right almost split map in add N.

Since F,, P is a simple injective A-module by Lemma[3.7] there is no non-zero map
from F,, P to FyX. Thus we only have to show that any morphism g: FoM' —FyX
which is not a split epimorphism factors through f. By Lemma [35 we can put
g = Foh for some h: M’'— X which is not a split epimorphism. Since h factors
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through f, we have that g = Fyh factors through Fof. Thus we have shown that
Fof is a right almost split map in add V. O

4.2. n-APR tilting complexes preserve n-representation-finiteness. Simi-
lar to Observation ] we have the following result for n-representation-finite alge-
bras.

Observation 4.6. Let A = P®Q as A-modules, such that Homy (@, P) = 0. Then
P has an associated n-APR tilting complex.

We have the following result.

Theorem 4.7. Let A be n-representation-finite, and let T be an n-APR tilting
complez in Dp. Then Endp, (T)°P is also n-representation-finite.

Proof. We set I' = Endp, (T')°P. By Proposition we know that, since gl.dim A
< n, we also have gl.dimI" < n.

By Proposition we know that the derived equivalence Dy — Dr induces an
equivalence Uy —Ur. Hence, by Theorem we have

A is n-representation-finite <= vy = Uy
< vlUr = Ur
<= I is n-representation-finite. O

4.3. Slices. In this subsection we introduce the notion of slices in the n-cluster
tilting subcategory U (see Definition .]). The aim is to provide a bijection between
these slices and the iterated n-APR tilting complexes of A (Theorem ET5]). This
will be done by introducing a notion of mutation of slices (Definition I2]) and by
proving that this mutation coincides with n-APR tilts.

Throughout, let A be an n-representation-finite algebra. We consider the n-
cluster tilting subcategory U = U} C Dy given in Section

Definition 4.8. An object S € U is called a slice if

(1) for any indecomposable projective module P there is exactly one i such
that v/ P € add S and

(2) add S is convex, which means that any path (that is, any sequence of non-
zero maps) in ind U, which starts and ends in add S, lies entirely in add S.

The following two observations give us the slices in which we are interested.
Observation 4.9. In the setup above, A € U is a slice, since we have
Homp, (v A, vIA) = HO(vI7A) =0
ifi<j.
Similarly, by Theorem (7] and Proposition B.20, any iterated n-APR tilting
complex of A is a slice in U.
Proposition 4.10. Let S be a slice. Then Homp, (S,v.S) =0 for any i > 0.

For the proof we will need the following observation:

Lemma 4.11. Assume A is indecomposable (as a ring) and not semi-simple. For
any indecomposable X € U there is a path v, X ~>X inU.
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Proof. Assume first that X is a non-projective A-module. By [Iyall Theorem 2.2]
there is an n-almost split sequence

I/nX = TnX Xn—l X1 X

with X; € Y Nmod A. This sequence gives rise to the desired path v, X ~ X in U.

Now let X € U be arbitrary indecomposable. By [IO, Lemma 4.9] there exists
i € Z such that v*X is a non-projective A-module. Then there exists a path
V' X ~>piX in Y. Since v is an autoequivalence of ¢ by Theorem 2.6, we have
a path v, X v X in U. O

Proof of Proposition 10, We may assume A to be connected and not semi-simple.
Then, by the above lemma, for any indecomposable S’ € addS there is a path
vpS'~>S" in U. Hence there are also paths v8 S’ ~»> S’ for i > 0. If Homp, (S, v5S")
# 0 for some i > 0, then we have v/2 S’ € add S by Definition E.8(2), contradicting
[43)(1). O

Definition 4.12. Let S be a slice, and let S = S’ ® S” be a direct summand
decomposition of S such that Homp, (S”,S’) = 0. We set

p&(S) = (v, ") ®S" and
15 (8) = S & (1 S").
We call them mutations of S.
Lemma 4.13. In the setup of Definition [L.12], ug,(S) and pig, (S) are slices again.

Proof. We restrict our attention to the case of u, (S). It is clear that it satisfies
condition (1) of Definition L8l To see that uf,(S) is convex, let p be a path in
indU starting and ending in ;L;(S ). We have the following four cases with respect
to where p starts and ends:
(1) If p starts and ends in S”, then it lies entirely in S. Since Homp, (S”,S’) =
0 it lies entirely in S”.
(2) Similarly, if p starts and ends in v, S’, then it lies entirely in v, 5.
(3) By Proposition I0 p cannot start in v, S" and end in S”.
(4) Assume that p starts in S” and ends in v, S’. Hence, by Proposition 10
the path p lies entirely in S @ v,;S. Then, since Homp, (5”,5’) = 0, it
can pass neither through S’ nor through v, S”. Therefore it lies entirely in

$/(9).
Hgr
Thus condition (2) of Definition F.8]is also satisfied. O
Lemma 4.14. (1) Any two slices in U are iterated mutations of each other.

(2) If moreover the quiver of A contains no oriented cycles, then any two slices
are iterated mutations with respect to sinks or sources of each other.

Proof. Let A = @ P; be a decomposition into indecomposable projectives. We
choose d; and e; such that the two slices are @ v% P; and @ v P;, respectively.
Since p&(S) = v, S, we can assume e; > d; for all i. We set I = {i | e; —

d; is maximal},
S = @ vei P and S = @ vl P;.
il jer
Now for i € I and j ¢ I we have

() ) €; A — d: . (6,7d,)7(67d) di A
HomDA(VnJP]’Vn B)_HomDA(VnJPJ’Vn Ty PL)
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Since by our choice of I we have (e; — d;) — (e; — d;) > 0, the above space vanishes
by Proposition [4.10l Hence we may mutate and obtain
15 (@D P) = (P 'P) o (Pripy).
i€l jer
Repeating this procedure we see that any two slices are iterated mutations of each
other.

For the proof of the second claim first note that if the quiver of A contains no
oriented cycles, then neither does the quiver of 4. So we can number the indecom-
posable direct summands of S” as S = 5 @ -+ @ S such that Homp, (5}, S}) =0
for any i > j. Then we have p, (9) = “gg o0---0 ,uJSr1 (S) by Proposition &£100 O

Theorem 4.15. Assume that A is n-representation-finite.

(1) The iterated n-APR tilting complezes of A are exactly the slices in U.

(2) If moreover the quiver of A contains no oriented cycles, then any iterated
n-APR tilting complex can be obtained by a sequence of n-APR (co)tilts in
the sense of Definition Bl

Proof. (1) By Observation 4.9 any iterated n-APR tilt comes from a slice. The
converse follows from Lemma [T4{(1) and Observation
(2) follows similarly using Lemma [14)(2) and Remark O

4.4. Admissible sets. In this subsection we will see that all the endomorphism
rings of slices, and hence all the iterated n-APR tilts, of an n-representation-finite
algebra are obtained as quotients of the (n + 1)-preprojective algebra (see Defini-

tion 2.1T)).
Lemma 4.16. Let S be a slice inU. Then
Homy (S, v;'S) C Radj,(S,v;'S).

Proof. By Theorem[4.15]we may assume S to be the slice A. Then the claim follows
from Proposition 2.12) (|

Construction 4.17. For P,(Q € add A indecomposable we choose
Co(P, Q) C Rady (P, v, Q) such that Cy(P, Q) is a minimal generating set of

- - n °p n op .
Rady (P, v; Q)/ Rady,(P,v; Q) as a Ra% Ed:]‘ d(f()P)op - Ra% Ed:]‘ d(f()Q)op -bimodule

and

H(P,Q) C Rady/(P,Q) such that H(P, Q) is a minimal generating set of

n op n op .
Rady (P, Q)/ Rad}, (P, Q) as a Ra]?i ggéfgp)op - Rfi E‘Z*éf()@op -bimodule.
We set

We write Co = [[p o Co(P, Q) and A = []p 5 A(P, Q). Note that by Definition 2.11]
the set A(P, Q) generates Radcy (P, Q)/ Rang(P, Q).

If k is algebraically closed, then H consists of the arrows in the quiver of A,
and Cy consists of the additional arrows in the quiver of A. Thus A consists of all
arrows in the quiver of A.
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Lemma 4.18.
A= A/(Co).
Proof. This follows from Proposition and the definition of Cy above. O

Definition 4.19. (1) We call Cy as above the standard admissible set.
(2) For C C A and a decomposition A = A’ @& A” (as modules) with
(a) addA’ Nadd A” =0,
(b) for P € add A’ and @ € add A” indecomposable we have C(P,Q) = 0,
(c) for P € addA” and @ € add A’ indecomposable we have C(P,Q) =
A(P,Q)
we define a new subset uf, (C) = puy.(C) C A by

C(P,Q) ifP®QecaddA,

C(P,Q) ifPoQeaddA,

A(P,Q) if PeaddA’ and Q € addA”,
0 if PecaddA” and Q € add A’.

pa (C)(P,Q) =

That is, we remove from C all arrows add A” — add A’, and we add all
arrows add A’ — add A” in A.
We call this set a mutation of C.
(3) An admissible set is a subset of A which is an iterated mutation of the
standard admissible set.

We will now investigate the relation of slices in &/ and admissible sets.
Construction 4.20. Let S = @ v P; be a slice in U. We set

Cs(P;, Pj) ={p € A(P,, P;) | v is a map P,— v, %~ "P; for some r > 0}.
Proposition 4.21. For any slice S in U we have

Endp, (5) = A/(Cs).

Proof. We have

Endp, (S)°° = Homp, (S, @ v 8)/(maps S— v, S) (by EI0 and FEIG)

=1/(Cs) (by definition of Cg). O

Proposition 4.22. (1) The map Cy: St>Cg sends slices in U to admissible
sets. Moreover any admissible set is of the form Cg for some slice S.
(2) Cq commutes with mutations in the following way:

CH;—/(S) = ‘LLX/ (CS) and
CH;//(S) = 'U/X”(CS)

whenever S = S'®S" and A = N'®A" such that w(S") = w(A') and w(S") =
w(A") (recall that m denotes the map from the derived category to the n-
Amiot cluster category; see Definition 27). In particular the mutations of
slices are defined if and only if the mutations of admissible sets are defined.

Proof. By definition A is a slice and Cy = (Y is the standard admissible set. We
now proceed by checking that all these properties are preserved under mutation.
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Assume we are in the setup of (2), that is, S = S'®S5” is a sliceand A = A’® A",
such that 7(S") = w(A’) and 7(S”) = 7w(A”). We may further inductively assume
that Cg is an admissible set:

all maps A” — A’ in A lie in Cg

<= Homp, (5”,5") =0 (by Proposition [.21])
<=S5" admits a mutation (by Definition F12)
= uk (9) =v, S @S is also a slice (by Lemma ET3))
— Homy(5,v,,S") C Rad},(S’,v, S") (by Lemma [.16])

(by Proposition [£.21]).
Therefore, the “in particular” part of (2) holds. Similar to the arguments above
one sees that C,,+ (g = 1ix (Cs)-
S/

= no maps A’ — A" in A lie in Cg

Now the surjectivity in (1) follows from the fact that, by definition, any admis-
sible set is an iterated mutation of the standard admissible set. O

Theorem 4.23. Let A be n-representation-finite. Then the iterated n-APR tilts of
A are precisely the algebras of the form A/(C), where C is an admissible set.
In particular oll these algebras are also n-representation-finite.

Proof. The first part follows from Propositions [£.21] and Theorem The
second part then follows by Theorem [£.7] O

5. n-REPRESENTATION-FINITE ALGEBRAS OF TYPE A

The aim of this section is to construct n-representation-finite algebras of ‘type A’.
The starting point (and the reason we call these algebras type A) is the construction
of higher Auslander algebras of type A; in [Iyal] (we recall this in Theorem 1]
here). The main result of this section is Theorem [.6] which gives an explicit
combinatorial description of all iterated n-APR tilts of these higher Auslander
algebras by removing certain arrows from a given quiver (see also Definitions B
and for the notation used in that theorem).

Definition 5.1. (1) Forn > 1and s > 1, let Q™*) be the quiver with vertices

n+1
Q) = {(t1, o, ... yr) € ZFY | Y ti=s-1}

i=1

and arrows

() —feSw+ filie{l,...,n+1}, 2,2+ f; € QI
where f; denotes the vector
i itl
fi=1(0,...,0,—-1,1,0,...,0) € Z"**

1 n+1
(cyclically, that is f,+1 = (1,0,...,0,—1)).
(2) For n > 1 and s > 1, we define the k-algebra A(™5) to be the path algebra
of Q™) with the following relations.
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For any x € Q(()n’s) and 4,7 € {1,...,n+1} satisfying x+ f;, -+ fi + f; €
(n,s)
0 )

i ; J 7 ns
(wat fiDat fitf) =4 @=a+fi—a+fi+f;) ifa+feQ,
0 otherwise.

(We will later show that this notation is justified: In Subsection B we

construct algebras A("*) such that A9 is the (n+1)-preprojective algebra
of A(™#); see also Proposition [5.48])

Example 5.2. (1) The quiver Q*) is the following:

(s—1L0)——(s—2,1)—3—  —3—=(Ls—2)—3—(0,s—1).

The algebra A1) is the preprojective algebra of type A,.
(2) The quiver Q> is

The algebras A2 appeared in the work of Geiss, Leclerc, and Schroer
[GLS1] IGLS2).
(3) The quiver Q) is

0200
/1/’ ~a

- 1100 0110

2000 ™ 1010 0020

<>

0101
1001 1

< /
N/

0002.

Definition 5.3. We call a subset C C Q ™3) of the arrows of Q™) cut, if it
contains exactly one arrow from each ( + 1)-cycle (see [BMR] BRS, BFP™] for
similar constructions).

Remark 5.4. (1) We will later show (see Remark [.13]) that cuts coincide with
admissible sets (as introduced in Definition F19).
(2) Clearly, in Definition 53] any (n + 1)-cycle is of the form

o(1) o(2) o(3) o(n) o(n+1)
2+ foy 2+ foy T foy " —x+ foy T+ fom) T,

for some 0 € &,,41.
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Example 5.5. (1) Clearly the cuts of Q(**) correspond bijectively to orienta-
tions of the Dynkin diagram A;.
(2) See Tables[Il B and @ for the cuts of Q%) Q24 and Q)| respectively.

We are now ready to state the main result of this section.

Theorem 5.6. (1) Let Q™) be as in Definition 5.1, and let C be a cut. Then
the algebra

AGPS) = A /()
18 n-representation-finite.
(2) All these algebras (for fized (n,s)) are iterated n-APR tilts of one another.

We call the algebras of the form AgL **) as in the theorem above n-representation-
finite of type A. Note that l-representation-finite algebras of type A are exactly
path algebras of Dynkin quivers of type A. See Tables[] Bl and @] for the examples
(n,s) =(2,3), (2,4), and (3, 3), respectively.

5.1. Outline of the proof of Theorem

Step 1. Let Cy be the set of all arrows of type n + 1. This is clearly a cut. We set

A = AT

For example, A(*%) is a path algebra of the linearly oriented Dynkin quiver Ay,
and A?*) is the Auslander algebra of A(*). More generally, the following result is
shown in [Iyal].

Theorem 5.7 (see [lyal]). The algebra A™9) s n-representation-finite. In partic-
ular, mod A%) has a unique basic n-cluster tilting object M%) . We have

AL > End (o0 (M5))0P,
that is, A"t1%) s the n-Auslander algebra of A%,
Step 2. We now introduce mutation on cuts.

For simplicity of notation, we fix n and s for the rest of this section, and we omit
all superscripts —("*) whenever there is no danger of confusion. (That is, by @ we
mean Q(™*), by A we mean A(™*) and so forth.)

Definition 5.8. Let C' be a cut of Q.

(1) We denote by Q¢ the quiver obtained by removing all arrows in C' from Q.

(2) Let x be a source of the quiver Q¢. Define a subset uf(C) of @1 by
removing all arrows in ) ending at = from C and adding all arrows in
starting at x to C.

(3) Dually, for each sink z of Q¢ we get another subset p (C) of Q1.

We call the process of replacing a cut C by u) (C) or u, (C'), when the conditions
of (2) or (3) above are satisfied, a mutation of cuts.

We will show in Proposition [5.14] in Subsection that mutations of cuts are
again cuts.

Observation 5.9. The quiver Q¢ is the quiver of the algebra kQ/(C).

The following remark explains the relationship between cuts and admissible sets.



6599

n-REPRESENTATION-FINITE ALGEBRAS AND n-APR TILTING

TABLE 3. Iterated 2-APR tilts of the Auslander algebra of linear

oriented A4 (thick lines indicate cuts)
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TABLE 4. Iterated 3-APR tilts of the higher Auslander algebra of
linear oriented Aj (thick lines indicate cuts)

Q
(o]

/

O

A
S~
IS
AN
S
e
0, O/ \O
W
PN

\
7\
4

/

\

O/ (o}
VAN

AN
\/
/

o

hY
7\

(o}
(o]

O!

\

[¢)

(o}

\

Q
Q

*
AN
v
7\,
0, \O/
\o/ AN ~
Y/

\/
O\ /O

%

AN

(o]
O
o]

\/
/

\
A
- N
\O
/
N AN ~
AN
e
N
.
\

N\
/
N

A\
\/

-
et
LN
L
N\
N\
2N
/

\

Q.
O
O
(&)

O,

Remark 5.10. (1) Whenever we mention admissible sets, it is implicitly under-
stood that we choose A = ()1 as the set of arrows in @ in Definition
(It is shown in Subsection [4.4] that the choice of A does not matter there,
but with this choice we can more easily compare admissible sets and cuts.)

(2) When C is a cut and an admissible set, and z is a source of Q¢, then the
mutations .} (C) of C as a cut and as an admissible set coincide.

(3) The standard admissible set Cy, as defined in Construction E.T7 and Defi-
nition .19 is identical to the set Cy defined in Step[l In particular it is a
cut.

(4) By (3) and (2) we know that any admissible set is a cut. The converse
follows when we have shown that all cuts are iterated mutations of one
another (see Theorem BIT] and Remark [513)).
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We need the following purely combinatorial result, which will be proven in Sub-
sections 53] to

Theorem 5.11. All cuts of Q are successive mutations of one another.

Step 3. Finally, we need the following result which will also be shown in Subsec-
tions to

Proposition 5.12. (1) Aty 18 an n-APR tilt of Ac.
(2) A+ (o s n-representation-finite if and only if Ac is as well.

Now Theorem follows:

Proof of Theorem [5.6l By Theorem [5.7] there is a cut Cy such that A¢, is n-repre-
sentation-finite. By Proposition £.12] this property is preserved under mutation of
cuts, and by Theorem [B.11] all cuts are iterated mutations of Cj. O

Remark 5.13. Theorem B11] together with Remark BI0(2) and (3), shows that in
the setup of Definition 5.1 the set of cuts (as defined in Definition [£.3]) and the set
of admissible sets (as defined in Definition T3] coincide.

5.2. Mutation of cuts. In this subsection we show that the mutations u; (C) (or
w, (C)) as in Definition 5.8 for a cut C' are again cuts.

Proposition 5.14. In the setup of Definition B.8(2) we have the following:
(1) Any arrow in Q ending at x belongs to C, and any arrow in @ starting at
x does not belong to C.
(2) pt(C) is again a cut.
(3) z is a sink of the quiver Q;J(C)'
For the proof we need the following observation, which tells us that any sequence
of arrows of pairwise different type may be completed to an (n + 1)-cycle.

Lemma 5.15. Let z € Z"*! and let o: {1,...,} —{1,...,n+ 1} be an injective
map. Assume that x + 22:1 Jo) belongs to Qo for any 0 < i < £. Then o
extends to an element 0 € S, 11 such that © + 22:1 fo(s) belongs to Qo for any
0<i<n+1.
Proof. The statement makes sense only for s > 2. We set [ := {0,...,s — 1}. For
any i € {1,....,n+ 1} wehavex; +1 €T orz; —1€ 1.

We can assume ¢ < n + 1. We will define o(¢ + 1) € {1,...,n + 1} such that
x + ng fo(;) belongs to Qo. Without loss of generality, we assume that ig and
i1(# ip,40 + 1) belong to Im o but that none of ig + 1,79 + 2,...,4; — 1 belong to
Imo. Since z and x + Zle fo(;) belong to Qp, we have

Tip+1 €1, xjgy1+1€ 1,2, €1, and z;; —1€ I

If iy = ig + 2, then o(£ + 1) := ip + 1 satisfies the desired condition. In the rest of
the proof, we assume i, # ig + 2. We divide it into three cases.
(i) If 2jy42 + 1 € I, then o(£ + 1) :=ig + 1 satisfies the desired condition.
(ii) If w;;—1 — 1 € I, then o(£ + 1) := i1 — 1 satisfies the desired condition.
(iii) By (i) and (ii), we can assume x;,42 —1 € I, 2;,—1 +1 € I and i1 # i + 3.
Then there exists ig + 2 < i < i1 — 1 satisfying
Ti,—1€l and x,41+1€l.

Then o(¢ 4+ 1) := i satisfies the desired condition. O
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Proof of Proposition [5.14l (1) The former condition is clear since z is a source

(2)

3)

of Q¢. Assume that an arrow a starting at = belongs to C'. By Lemma [5.15]
we know that a is part of an (n + 1)-cycle c¢. Then ¢ contains at least two
arrows which belong to C, a contradiction.

Let ¢ be an (n + 1)-cycle. We only have to check that exactly one of the
(n+1) arrows in ¢ is contained in u; (C'). This is clear if = is not contained
in ¢. Assume that z is contained in ¢, and let a and b be the arrows in
c ending and starting in z, respectively. Since C' is a cut, a is the unique
arrow in ¢ contained in C. Thus b is the unique arrow in ¢ contained in

(O).
I
Clear from (1). O

5.3. n-cluster tilting in derived categories. This and the following two sub-
sections are devoted to the proofs of Theorem 51T and Proposition [5.12]
We consider a covering @ of @ and then introduce the notion of slices (see Defi-

nition [5.20) in @ and their mutation. Then we construct a correspondence between
cuts and v,-orbits of slices (Theorem [.24) and show that slices are transitive un-
der mutations (Theorem [E27). These results are the key steps of the proofs of
Theorem [E.11] and Proposition

We give the conceptual part of the proof in this subsection and postpone the
proof of the combinatorial parts (Theorems [(.24] and 5.27)) to Subsection .41

We recall the subcategory

U=add{v A |icZ}

of Dy (see Subsection 2:2)).

Definition 5.16. We denote by Qv = @(”’S) the quiver with

n+1
Qo= {(tr, b2y .. log1:1) €ZE X Z| D 45 =51}

j=1

(we separate the last entry of the vector to emphasize its special role) and

@1:{5m7i:x$x+gi|1§i§n+1, x,x—kgieéo},

where g; denotes the vector

i i1 .
(0,...,0,—1,1,0,...,0:0), 1<i<n,
n+1

g9i = 1
(1,0,...,0,—1:1), i=n4+1.

We consider the category obtained from the quiver é by factoring out the relations

4 J J 4
t——z4+g——x+g +gj]=[z z+gj z+ g + 95
if 2,2+ g,z + gj, = + gi + g5 € Qo,
i J
t——2+g——z+gi+g;]=0
if #,2 + gi,x + i + g; € Qo and z + g; & Qo.
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Example 5.17. The quiver @(1’4) is the following:

03:0 03:1 03:2 03:3
L ~a a7 ~a
12:0 12:1 12:2 12:3 12:4 - -

~, 17 ~, g ~, 17 ~,

- _— _— - _—
y 21:1 e 21:2 y 21:3 21:4

1 2, 1 2, 1
30:1 30:2 30:3 30:4 30:5 -

~

The quiver Q>4 is the following:

1 2 : 2
210:2 1112 0122
17 —~2 17 2 17 —~2
) — - _ - — -
300:2 201:2 \ 102:2 003:2
3

—1 : \2\ — ’
2100 S T e -
300:1 7 > 2011\ \ ™ 1021 > 003:1
\120: 0 \021:0 \
., 210:0 o Soz0

300:0 2010 T 2:0 003:0

¢
»l

Remark 5.18. By abuse of notation we also denote the automorphism of @ induced
by sending (¢1,%a, ..., ln11:%) to (¢1,02,...,Lyr1:i—1) by v, and the map Q —Q
induced by sending (¢1,%s,...,4,41:%) to (¢1,%2,...,0,11) by 7.

The following result is shown in [[yall Theorem 6.10] (see Theorem 2.3H)).

Theorem 5.19. (1) The n-cluster tilting subcategory U of Dy is presented by
the quiver @ with relations as in Definition G106l
(2) In this presentation the indecomposable projective A-modules correspond to
the wvertices (01,...,lnt1:0), and the indecomposable injective A-modules
correspond to the vertices (£1,...,0n41:41).
(3) The n-cluster tilting A-module is given by the direct sum of all objects cor-
responding to the vertices between projective and injective A-modules.

We now carry over the concept of slices to the quiver setup.
Definition 5.20. A slice of Q is a full subquiver S of Q satisfying the following
conditions.

(1) Any v,-orbit in @ contains precisely one vertex which belongs to S.
(2) S'is convex, i.e. for any path p in () connecting two vertices in S, all vertices
appearing in p belong to S.

Remark 5.21. Definition B.20]is just a “quiver version” of Definition [£.8 In partic-
ular it is clear that slices in @ and slices in U are in natural bijection.

Next we carry over Construction .20] to this combinatorial situation, that is, we
produce from any slice in @ a cut Cg.
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Proposition 5.22. (1) For any slice S in Q, we have a cut
CS = Ql \71'(51)
(2) 7 gives an isomorphism S—> Q¢ of quivers.

Proof. (1) Let

al as An An41
T T2 Tn+1 T

be an (n + 1)-cycle in . We only have to show that there exists precisely one
i €{1,...,n+ 1} such that the arrow a; does not lie in 7(S57).

 Let Q' be the full subquiver of Q defined by ég =71 1({z1,...,2051}). Then
@’ is isomorphic to the A% quiver

Y-1 Yo U1 Y2 T,

where 7(yit(nt1);) = {2} holds for any i € {1,...,n + 1},j € Z. Since S is a
slice, there exists k € Z such that the n + 1 vertices yx, Yk+1, - - -, Ys+n belong to
So and any other y; does not belong to Sg. Take k' € {1,...,n + 1} such that
k — k" € (n+1)Z. Then the n arrows

s Ak’ +1 an An41 a1 apr_o
L Tr'+1 T Tn+1 Ty T Tpr—1

belong to m(S1), and xp—1 :kaf does not belong to m(S1).

(2) By Definition[520(1), 7: So— (Qcg)o = Qo is bijective and 7: S1— (Qcy )1
is injective. Since (Qcg)1 = 7(S1) by our construction, we have that 7 is an iso-
morphism. O

Example 5.23. Two slices and the corresponding cuts for n = 1 and s = 4 are
shown as follows:

INO
NN
WAVAVAV AN

Some slices and corresponding cuts for n = 2 and s = 3 can be found in Table

o*"“o‘;’ o€

Now we state the first main assertion of this subsection, which will be proven in
the next subsection.

Theorem 5.24. The correspondence S+>Cys in Proposition [5.22] gives a bijection
between vy, -orbits of slices in Q and cuts in Q.

Let us introduce the following notion.
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TABLE 5. Some slices and corresponding cuts for n = 2 and s = 3

slices: corresponding cuts:

Definition 5.25. Let S be a slice in @
(1) Let « be a source of S. Define a full subquiver i (S) of Q by removing

from S and adding v, «.
(2) Dually, for each sink x of S, we define p (S).

We call the process of replacing a slice S by pf () or u (S) the mutation of slices.

Proposition 5.26. In the setup of Definition [0.25l(1) we have the following.

(1) Any successor of x in @ belongs to S, and any predecessor of x in C,j does
not belong to S.

(2) Any successor of v, x in @ does not belong to put(S), and any predecessor
of vz in Q belongs to put(S).

(3) utr(S) is again a slice, and v, x is a sink of ut(S).

(4) We have C+ (o) = pi(z)(Cg).
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Proof. (1) Let Cg be the cut given in Proposition Then z is a source of Qcy.
By Propositions [5.14)(1) and 5:222(2), we have the assertion.

(2) The former assertion follows from the former assertion in (1) and the defini-
tion of a slice.

Take a predecessor y of v,  and an integer i such that v%y € Sp. If i > 0, then
we have i = 1 since there exists a path from vy to x passing through v, y. This is
a contradiction to the latter assertion of (1), since v,y is a predecessor of x. Thus
we have i < 0. Since there exists a path from x to v}y passing through y, we have
(RS So.

(3) By (2), v, x is a sink of pu}(S). We only have to show that u (S) is convex.
We only have to consider paths p in @ starting at a vertex in p} () and ending at
v, x. Since any predecessor of v, = in @ belongs to S by (2) and since S is convex,
any vertex appearing in p belongs to u}(S).

(4) This is clear from (1) and (2). O

The following is the second main statement in this section, which will be proven
in the next subsection.

Theorem 5.27. The slices in @ are transitive under successive mutation.

Remark 5.28. Note that one can prove Theorem [(.27] by using the categorical
argument in Lemma [£14l But we will give a purely combinatorial proof in the
next subsection since it has its own interest.

Clearly Theorem [511] is an immediate consequence of Proposition [£.26(4) and
Theorems .24 and above. B

We now work towards a proof of Proposition We identify a slice S in Q
with the direct sum of all objects in Dy corresponding to vertices in S.

Lemma 5.29. (1) Endp, (S) = Ac,.-
(2) Let x be a source of S. If S is a tilting complex in Dy, then uf(S) is an
n-APR tilting Ac,-module.

Proof. (1) m gives an isomorphism S—>Cg. It is easily checked that the relations

for U correspond to those for A.
(2) This is clear from the definition. O

Proposition 5.30. For any slice S in @, the corresponding object S € Dy is an
iterated n-APR tilting complex.

Proof. This is clear for the slice consisting of the vertices of the form (¢1,. .., £,41:0)
by Theorem [5.19(2). We have the assertion by Theorem and Lemma [5.20(2).
U

Proof of Proposition [5.12. By Theorem there exists a slice S in @ such that
C = Cg. Take a source y of S such that x = 7(y). By Lemma [(529(1) we can
identify Ac with S. By Lemma [5.29(2) and Proposition 530, p;f (S) is an n-APR
tilting Ag-module with

Endp, (113 (5)) = ACM;(S) = A;[,','(C)'

Thus the assertion follows. O
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5.4. Proof of Theorems and In this subsection we give the proofs
of Theorems and which were postponed in Subsection [5.3] We postpone
further (to Subsection 5.5 the proof of Proposition [1.33] a technical classification
result needed in the proofs here.

We need the following preparation.

Definition 5.31. (1) We denote by walk(Q) the set of walks in @ (that is,
finite sequences of arrows and inverse arrows such that consecutive entries
involve matching vertices). For a walk p we denote by s(p) and e(p) the
starting and ending vertex of p, respectively. A walk p is called cyclic if
s(p) = e(p).

(2) We define an equivalence relation ~ on walk(Q) as the transitive closure of
the following relations:
(a) aa™ ~ egq) and ala ~ e for any a € Q.
(b) If p ~ q, then rpr’ ~ rqgr’ for any r and r’.

Similarly we define walk(@) and the equivalence relation ~ on walk(Q).
For a walk p = a; - - - a,, we denote by p~1 :=a,!--- a;l the inverse walk.
Any map w: @1 — A with an abelian group A is naturally extended to a map

w: walk(Q)— A by putting w(a™!) := —w(a) for any a € Q1 and

w(p) :== Z w(b;)

for any walk p = by - - - by. We define w: walk(Q)— A by w(p) := w(n(p)). Clearly

these maps w: walk(Q)— A and w: walk(Q) — A are invariant under the equiv-
alence relation ~.
In particular, we define maps

#i: walk(Q)—Z and @ = (¢1,...,¢n11): walk(Q)—Z" !
by setting ¢;(a) := d;; for any arrow a of type j in Q.
Definition 5.32. We denote by G the set of cyclic walks satisfying
p~ (@ a e e ) o (aeg e )
for some walks ¢; and (n + 1)-cycles ¢;.

We will prove Theorems [5.24] and 5.277] by using the following result, which will
be shown in the next subsection.

Proposition 5.33. Any cyclic walk on @Q belongs to G.

Using this, we will now prove the following proposition, telling us that on Q¢
the value ®(p) depends only on s(p) and e(p).
Proposition 5.34. Let C be a cut of Q.
(1) For any cyclic walk p on Q¢, we have ®(p) = 0.
(2) For any walks p and q¢ on Q¢ satisfying s(p) = s(q) and ¢(p) = e(q), we
have ®(p) = ®(q).
To prove Proposition (5.34] we define a map

¢pc: walk(Q)—Z
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by setting
. 1 ifa¢C,
sota)={ 1, eEG

for any arrow a € Q.
Lemma 5.35. For any cyclic walk p on Q, we have ¢pc(p) = 0.

Proof. Any (n + 1)-cycle C satisfies ¢ (¢) = 0. By Proposition £33 we have the
assertion. O

We define a map
lo: walk(Q)—Z
by putting
if a
lola) = { ? ifaig,
for any arrow a € Q.
The following result is clear.

Lemma 5.36. For any p € walk(Q) we have . 6:(p) = dc(p) + (n+ 1)lc(p).
Now we are ready to prove Proposition [5.341

Proof of Proposition [534l (1) Since p is a cyclic walk, we have E?ill i(p)fi =0
(with f; as in Definition [5.1]). This implies ¢1(p) =« = dnr1(p)-
Since p is a cyclic walk on Q¢, we have

n+1
Zdu(p) =¢c(p)+(n+1)lc(p) =0+ (n+1)-0=0

by Lemmas and Thus we have ¢1(p) =+ = ¢dn41(p) = 0.
(2) We have ®(p) — ®(q) = ®(pg~') = 0 by (1). O

The fact that Q — Q is a Galois covering is reflected by the following lemma on
the lifting of walks.

Lemma 5.37. Fiz 2o € Qo and Ty € @0 such that 7(Zo) = xo. For any walk p
in Q with s(p) = xo, there exists a unique walk p in Q such that s(p) = Ty and
7(p) = p-

Proof. For any « € @y and y € @0 such that 7(y) = x, the morphism : @*»Q
gives a bijection from the set of arrows starting (respectively, ending) at y to the
set of arrows starting (respectively, ending) at z. Thus the assertion follows. (I

We have the following key observation.

Lemma 5.38. Fiz xq € Qp and Iy € @0 such that (o) = zo. For any walks p
and q in Q¢ satisfying s(p) = s(q) = xo and e(p) = e(q), then p and q as given in
Lemma B3 satisfy e(p) = e(q).

Proof. By our definition of ®, we have that ¢;(p) counts the number of arrows of
type i appearing in p. Since we have ¢;(p) = ¢;(¢) by Proposition B34, we have
that the number of arrows of type i appearing in p is equal to that in ¢. Since
5(p) = s(q), we have ¢(p) = ¢(q). O
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Now Theorem [5.24 follows from the following result, which allows us to construct
slices from cuts.

Proposition 5.39. Let C be a cut in Q. Fiz a verter zg € Qo and To € 7~ (z0).
(1) There exists a unique morphism t: QCH@ of quivers satisfying the fol-
lowing conditions:
o 1(xg) = Tp,
e the composition wov: Qo —>Q is the identity on Qc.
(2) «(Qc) is a slice in Q.

Proof. (1) To give the desired morphism ¢: Q¢ — @ of quivers, we only have to give
amap t: Qg HQVO between the sets of vertices, satisfying the following conditions:
e (xg) = Ty,
e the composition wot: Q¢ —> (@ is the identity on Qg,
e for any arrow a: x —y in Q¢, there is an arrow ¢(z) —(y) in @

We define ¢: QOHQVO as follows. Fix any z € Qp. We take any walk p in Q¢
from z( to . By Lemmal[5.37 there exists a unique walk p in @ such that s(p) = z¢
and m(p) = p. Then we put ¢(z) := ¢(p). By Lemma[B.38] ¢(x) does not depend on
the choice of the walk p.

We only have to check the third condition above. Fix an arrow a: x—>y in
Qc. Take any walk p in Q¢ from zg to . The walk pa: zog~>y in Q¢ gives the
corresponding walk pa: Tp~>((y) in @ Then pa has the form pb for an arrow
b: u(z) — 1(y) and a walk p: Zo~>u(z) in Q. Thus the third condition is satisfied.

The uniqueness of ¢ is clear.

(2) Fix vertices x,y € t(Qc)o and a path p in Q from z to y. We only have to
show that p is a path in ((Q¢).

Since Q¢ is connected, we can take a walk ¢ on ¢«(Q¢) from z to y. Then we
have ®(7(p)) = ®(w(q)). We have

n+1 n+1

¢o(p) + (n+Dlc(p) =D ¢ilp) =Y ¢i(a) = ¢c(q) + (n+ Dlclq) = do(q)
=1 =1

by Lemma [530 Since we have ¢ (p) = ¢¢(q) by Lemma 530 we have o (p) = 0.
By definition of ¢, any arrow appearing in p belongs to t(Q¢). O

This completes the proof of Theorem

In the remainder of this subsection we give a purely combinatorial proof of
Theorem N

For a slice S, we denote by Sy the subset of Qy consisting of sources in S.

Lemma 5.40. The correspondence S+ Sy is injective.

Proof. We denote by S, the set of vertices x of @ satisfying the following conditions:

e there exists a path in @ from some vertex in S; to x,
e there does not exist a path in @ from any vertex in Sar to vy z.
To prove the assertion, we only have to show Sy = ). It is easily seen from the
definition of S, that each v,-orbit in @0 contains at most one vertex in Sj. Since
So is a slice, we only have to show Sy C .S.
For any x € Sy, there exists a path in S from some vertex in SS’ to = since S
is a finite acyclic quiver. Assume that there exists a path p in @ from y € SS' to
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v, x. Since there exists a path ¢ in @ from v,z to x, we have a path pq from y to
x. Since S is convex, we have v,z € Sy, a contradiction to x € Sp. [l

For a slice S of @, define the full subquiver QVEO by
(@30 := | v4So.

£>0
Clearly we have (é/ig(S))O = (@EO)O U{y, x}.

Lemma 5.41. Let S be a slice in @ Then there exists a numbering So = {z1,...,
xn} of vertices of S such that the following conditions are satisfied:

(1) @iy1 is a source in pf o---opuf (S) for any 0 <i < N.

(2) We have pf o---oput (S)=v,S.

Proof. When we have z1,...,2;,_1 € Sy, then we define x; as a source of the quiver
S\ A{zo,...,x;—1}. It is easily checked that the desired conditions are satisfied. O

For slices S and T in Q, we write S < T if (NEO)O - (~%0)0. In this case, we

put B _
d(S,T) == #((Q7")o \ (@5")o)-

Now we are ready to prove Theorem

Let S and T be slices. We can assume S < T by Lemma (.41l We use the
induction on d(S,T). If d(S,T) = 0, then we have S = T. Assume d(S,T) > 0.
As in the proof of Lemma [5.40], one can see that, if Sar C T(;r, then S = T. Thus
there exists a source = of S such that z ¢ Ty. Then we have uf(S) < T and
d(pt(S),T) = d(S,T) — 1. By our assumption on induction, pu} (S) is obtained
from T by a successive mutation. Thus S is obtained from T by a successive
mutation. O

5.5. Proof of Proposition [5.33. We complete the proof of Theorem [5.6] by filling
the remaining gap, that is, by proving Proposition [£.33]

For a walk p, we denote by |p| the length of p. For z,y € Qy, we denote by
d(x,y) the minimum of the length of walks on @ from z to y.

It is easily checked (similar to the proof of Lemma [B15) that d(x,y) = d(a',y’)
whenever x —y =z’ —¢/'.

Lemma 5.42. Let p be a cyclic walk. Assume that, for any decomposition p =
p1p2ps of p,
d(s(p2), e(p2)) = min{|pa|, [psp1 |}

holds. Then one of the following conditions holds:

(1) p or p=t is an (n+ 1)-cycle.

(2) p has the formp = af* ---ay by - - - b, ““ with an injective map o: {1,..., 4}

—{1,...,n}, arrows a; and b; of type (i) and ¢; € {£1}.

Proof. (i) Assume that p contains an arrow of type i and an inverse arrow of type

i at the same time. Take any decomposition p = qiag:b~" with arrows a, b of type
i and walks ¢1 and ¢o. If |g2| < |¢1], then we have

d(s(q1), e(q1)) = d(e(g2), 5(q2)) < min{lq1], [agab™"[},

a contradiction. Similarly, |¢1]| < |¢2| cannot occur. Consequently, we have |¢1| =
lg2|. This equality also implies that ¢; and g2 do not contain arrows or inverse
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arrows of type i. So ¢;(p) = 0, and hence ¢;(p) = 0 for any j. Then it is easy to
see that p satisfies condition (2).

(ii) In the rest of the proof, we assume that p does not satisfy condition (2). By
(i), we have that p does not contain an arrow of type ¢ and an inverse arrow of type
i at the same time. Without loss of generality we may assume ¢;(p) > 0. Then p
contains exactly ¢;(p) arrows of type 4 for each i, and it does not contain inverse
arrows.

Since p is a cyclic walk, we have an equality Z?;Lll i(p)fi = 0. This implies
¢ = ¢1(p) = -+ = Ppt1(p). We shall show that ¢ = 1. Then condition (1) is
satisfied.

Assume that ¢ > 1 holds.

Assume that |p| is odd, so n + 1 is also odd. We write p = ap;ps with an
arrow a and |p1| = |p2|. By our assumption, we have d(s(p1),e(p1)) = |pi| =
|p2| = d(s(p2),e(p2)). This implies that less than "T“ types of arrows appear in
p1 (respectively, p2). Since ¢ > 1, either p; or ps contains an arrow of the same
type with a. Hence p contains less than % + "TH = n + 1 kinds of arrows, a
contradiction.

Assume that |p| is even. We write p = ap1bps with arrows a,b and [p1] = |p2|.
By our assumption, we have

d(s(apr), e(ap1)) = |ap1| = [bpa| = d(s(bp2), e(bp2))-

This implies that at most "T'H types of arrows appear in ap; (respectively, bps).
Since all kinds of arrows appear in p, we have that ap; and bps contain exactly ”TH
types of arrows, and there is no common type of arrows in ap; and bps. By the
same argument, we have that p;b and poa contain exactly "T'H types of arrows, and
there is no common type of arrows in p1b and psa.

Since ¢ > 1, either p; or py contains an arrow of same type with a. Assume
that p; contains an arrow of the same type with a. Then p;b and psa contain a
common type of arrows, a contradiction. Similarly, po does not contain an arrow

of the same type with a, a contradiction. (I
Lemma 5.43. The cyclic walk in Lemma BA2(2) belongs to G ife; = -+~ =¢p = 1.

Proof. By Lemma B8 ay - - ap extends to an (n 4+ 1)-cycle aj - - ap41 in Q with
a; an arrow of type o(i) (¢ € 6,41 extending the original o). Since

-1 —1 -1
a/l"'aébl .bf N(al...an+1)(bé...b1a€+1...an+1) €G7
we have the assertion. O

Lemma 5.44. Let pab€ q and pc€ déq be cyclic walks on Q, with e, ¢ € {1}, such
that a and d are arrows of the same type, and b and ¢ are arrows of the same type.
Then one of them belongs to G if and only if the other does.

Proof. We have the equivalences
pabg ~ (p(abd ™ c¢™1)p~ ") (pedq) (e=¢=1),
pab~tq ~ (pc~ " (cab™td™")ep™ ) (pe ™ dg) (e=1¢=-1),
and similarly for the remaining cases. The claim now follows from Lemma5.43 O

Lemma 5.45. Letx € Qo, o: {1,...,0} —{1,...,n+ 1} be an injective map and
€ € {1} for any 1 <i < (. Assume that x+ 37, € fo(j) and x + Z?:i € fo )
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belong to Qo for any 0 < i < £. Then, for any subset I of {1,...,£}, we have that
T+ Zje[ €j fo(;) belongs to Qq.

Proof. We only have to show that
0< 2,04 —€ <sand 0<xy3)41+6 <s

hold for any i € {1,2,...,¢}.

Ifo(i)—1¢ {o(1),...,0(i — 1)}, then the o(i)-th entry of 2 + 23:1 €jfo(j) 18
equal to z,;) — €. If o(i) =1 ¢ {o(i +1),...,0({)}, then the o(i)-th entry of
T+ Z?:i €jfo(;) is equal to w,(;) — €;. In each case we have the former inequality.

The latter inequality can be shown in a similar manner. ([

We now look at the following special case of Proposition (.33

Lemma 5.46. Any cyclic walk satisfying the condition in Lemma [5.42(2) belongs
to G.

Proof. Let p be the cyclic walk in Lemma [5.42](2), and let « = s(p). It follows from
Lemma [5.45] that for any ¢ € &y, @ contains the cyclic walk

Do = (gajelg(l)) T (eafzg“’)bfel e ‘bZEe

starting from x, where ,a, is an arrow of type o(p(i)). When p is given by p(i) =
£+ 1 —1i, the cyclic walk p, is

Po = byt - by by b

which clearly belongs to G. Using Lemma [5.44] repeatedly, we see that all p, lie in
G, so in particular p = piq € G. O

Now we are ready to prove Proposition £.33]

Proof of Proposition [5.33. We use the induction on |p|. Assume that p does not
satisfy conditions (1) and (2) in Lemma [5.42 Then we can write p = p1paps with

d(s(p2), ¢(p2)) < min{|pal, [pspa]}-
Take a walk ¢ from s(p2) to e(p2) with |¢| = d(s(p2), e(p2)). Then we have
p~ (p1aps)(p5 ' (a ' p2)p3),

[p1aps| = |p1| + lg| + |ps| < Ip| and |g~"pa| = |g| + [p2| < |p|- By our assumption of
induction, p1gps and ¢~ 'py belong to G. Thus p also belongs to G. (]

5.6. (n + 1)-preprojective algebras. We end this paper by showing that the
algebras A("*) have the following properties:

Theorem 5.47. A(™%) js self-injective weakly (n+ 1)-representation-finite, and we

have a triangle equivalence mod A(™®) ~ CX(J;%H,S,]).

We remark that this proof relies heavily on a results from [[O] (also see Re-
mark 4.17 in that paper). We need the following observation.

Proposition 5.48. For any cut C' of Q™) , the (n + 1)-preprojective algebra of
the n-representation-finite algebra A(Cn’s) is A1)
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Proof. The quiver morphism 7: @(”’S)HQ(”’S) gives an equivalence U/v, =

proj A(™5) of categories, which sends A(g’s) to A Thus the (n + 1)-pre-
f et (n,s) .

projective algebra of A, is

Endy,,, (A5*))oP o2 R0v9), O

Proof of Theorem [B.47. By Proposition [(£.48] the algebra A9 is the (n + 1)-pre-
projective algebra of the n-representation-finite algebra A(C? ) for any cut C. Thus,
by [IO, Corollary 3.4], A9 is self-injective.

Moreover, by [IOL Theorem 1.1], we have

mod A*) ~ Crtt

where T" is the stable n-Auslander algebra of Agl’s). In particular, for C' = Cy we

have that T is the stable n-Auslander algebra of A(™*) which is End  (n,s) (M (™%)) =
A(nJrl,sfl) .

The fact that A(™*) is weakly (n + 1)-representation-finite now follows from

the existence of an (n + 1)-cluster tilting object in C’X(J;%H,s,l) by work of Amiot
([Amill [Ami2]; also see [IOL Corollary 4.16)). O
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