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n-REPRESENTATION-FINITE ALGEBRAS

AND n-APR TILTING

OSAMU IYAMA AND STEFFEN OPPERMANN

Abstract. We introduce the notion of n-representation-finiteness, generaliz-
ing representation-finite hereditary algebras. We establish the procedure of
n-APR tilting and show that it preserves n-representation-finiteness. We give
some combinatorial description of this procedure and use this to completely
describe a class of n-representation-finite algebras called “type A”.
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1. Introduction

One of the highlights in representation theory of algebras is given by representa-
tion-finite algebras, which provide a prototype of the use of functorial methods
in representation theory. In 1971, Auslander gave a one-to-one correspondence
between representation-finite algebras and Auslander algebras, which was a mile-
stone in modern representation theory that later led to Auslander-Reiten theory.
Many categorical properties of module categories can be understood as analogues
of homological properties of Auslander algebras, and vice versa.

To study higher Auslander algebras, the notion of n-cluster tilting subcategories
(=maximal (n−1)-orthogonal subcategories) was introduced in [Iya3], and a higher
analogue of Auslander-Reiten theory was developed in a series of papers [Iya1, Iya2,
IO]; see also the survey paper [Iya4]. Recent results (in particular [Iya1], but also
this paper and [HI, HZ1, HZ2, HZ3, IO]) suggest that n-cluster tilting modules
behave very nicely if the algebra has global dimension n. In this paper, we call
such algebras n-representation-finite and study them from the viewpoint of APR
(=Auslander-Platzeck-Reiten) tilting theory (see [APR]).

For the case n = 1, 1-representation-finite algebras are representation-finite
hereditary algebras. In the representation theory of path algebras, the notion of
Bernstein-Gelfand-Ponomarev reflection functors plays an important role. Nowa-
days they are formulated in terms of APR tilting modules from a functorial view-
point (see [APR]). A main property is that the class of representation-finite heredi-
tary algebras is closed under taking endomorphism algebras of APR tilting modules.
By iterating the APR tilting process, we get a family of path algebras with the same
underlying graph with different orientations

We follow this idea to construct from one given n-representation-finite algebra
a family of n-representation-finite algebras. We introduce the general notion of
n-APR tilting modules, which are explicitly constructed tilting modules associated
with simple projective modules. The difference from the case n = 1 is that we need
a certain vanishing condition of extension groups, but this is always satisfied if Λ
is n-representation-finite.

In Section 3 we introduce n-APR tilting. We first introduce n-APR tilting
modules. We give descriptions of the n-APR tilted algebra in terms of one-point
(co)extensions (see Subsection 3.2, in particular Theorem 3.8), and for n = 2 also
in terms of quivers with relations (see Subsection 3.3, in particular Theorem 3.11).
Finally we introduce n-APR tilting in derived categories.

In Section 4 we apply n-APR tilts to n-representation-finite algebras. The
first main result is that n-APR tilting preserves n-representation-finiteness (The-
orems 4.2 and 4.7). In Subsections 4.3 and 4.4 we introduce the notions of slices
and admissible sets in order to gain a better understanding as to which algebras
are iterated n-APR tilts of a given n-representation-finite algebra. More precisely
we show that the iterated n-APR tilts are precisely the quotients of an explicitly
constructed algebra by admissible sets (Theorem 4.23).

As an application of our general n-APR tilting theory, in Section 5 we give
a family of n-representation-finite algebras by an explicit quivers with relations,
which are iterated n-APR tilts of higher Auslander algebras given in [Iya1]. We
call them n-representation-finite algebras of type A, since, for the case n = 1, they
are path algebras of type As with arbitrary orientation. As shown in Section 4 in
general, they form a family indexed by admissible sets. In contrast to the general
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setup, for type A we have a very simple combinatorial description of admissible sets
(we call sets satisfying this description ‘cuts’ until we can show that they coincide
with admissible sets; see Definition 5.3 and Remark 5.13). Then the n-APR tilting
process can be written purely combinatorially in terms of ‘mutation’ of admissible
sets, and we can give a purely combinatorial proof of the fact that all admissible
sets are transitive under successive mutation.

Summing up with results in [IO], we obtain self-injective weakly (n+1)-represen-
tation-finite algebras as (n + 1)-preprojective algebras of n-representation-finite
algebras of type A. This is a generalization of a result of Geiss, Leclerc, and Schröer
[GLS1], saying that preprojective algebras of type A are weakly 2-representation-
finite.

2. Background and notation

Throughout this paper we assume Λ to be a finite dimensional algebra over
some field k. We denote by modΛ the category of finite dimensional Λ-modules
(all modules are left modules).

2.1. n-representation-finiteness.

Definition 2.1 (see [Iya1]). A module M ∈ modΛ is called an n-cluster tilting
object if

addM = {X ∈ modΛ | ExtiΛ(M,X) = 0 ∀i ∈ {1, . . . , n− 1}}
= {X ∈ modΛ | ExtiΛ(X,M) = 0 ∀i ∈ {1, . . . , n− 1}}.

Clearly such an M is a generator-cogenerator and is n-rigid in the sense that
ExtiΛ(M,M) = 0 ∀i ∈ {1, . . . , n− 1}.

Note that a 1-cluster tilting object is just an additive generator of the module
category.

Definition 2.2. Let Λ be a finite dimensional algebra. We say Λ is weakly n-
representation-finite if there exists an n-cluster tilting object in modΛ. If moreover
gl.dimΛ ≤ n, we say that Λ is n-representation-finite.

The main aim of this paper is to better understand n-representation-finite alge-
bras and to construct larger families of examples.

For n ≥ 1 we define the following functors:

Trn := TrΩn−1 : modΛ modΛop,

τn := DTrn : modΛ modΛ,

τ−n := Trn D : modΛ modΛ.

(See [ARS] for definitions and properties of the functors Tr, D, and τ1.)

Proposition 2.3 ([Iya3]). Let M be an n-cluster tilting object in modΛ.

• We have an equivalence τn : addM addM with a quasi-inverse
τ−n : addM addM .

• We have functorial isomorphisms HomΛ(τ
−
n Y,X) ∼= DExtnΛ(X,Y )

∼= HomΛ(Y, τnX) for any X,Y ∈ addM .
• If gl.dimΛ ≤ n, then addM = add{τ−i

n Λ | i ∈ N} = add{τ inDΛ | i ∈ N}.



6578 OSAMU IYAMA AND STEFFEN OPPERMANN

We have the following criterion for n-representation-finiteness:

Proposition 2.4 ([Iya3, Theorem 5.1(3)]). Let Λ be a finite dimensional algebra
and n ≥ 1. Let M be an n-rigid generator-cogenerator. The following conditions
are equivalent.

(1) M is an n-cluster tilting object in modΛ.
(2) gl.dimEndΛ(M) ≤ n+ 1.
(3) For any indecomposable object X ∈ addM , there exists an exact sequence

0 Mn · · · M0

f
X

with Mi ∈ addM and a right almost split map f in addM .

2.2. Derived categories and n-cluster tilting. Let Λ be a finite dimensional
algebra of finite global dimension. We denote by

DΛ := Db(modΛ)

the bounded derived category of modΛ. We denote by

ν := DΛ⊗L
Λ − ∼= DRHomΛ(−,Λ): DΛ DΛ

the Nakayama-functor in DΛ. Clearly ν restricts to the usual Nakayama functor

ν : addΛ addDΛ.

We denote by νn the n-th desuspension of ν, that is, νn = ν[−n].
Note that if gl.dimΛ ≤ n, then τ±n = H0(ν±n −).
We set

U = Un
Λ := add{νinΛ | i ∈ Z} ⊆ DΛ.

Theorem 2.5 ([Iya1, Theorem 1.23]). Let Λ be an algebra of gl.dimΛ ≤ n such
that τ−i

n Λ = 0 for sufficiently large i. Then the category U is an n-cluster tilting
subcategory of DΛ.

In particular, if Λ is n-representation-finite, then U is n-cluster tilting.

We have the following criterion for n-representation-finiteness in terms of the
derived category:

Theorem 2.6 ([IO, Theorem 3.1]). Let Λ be an algebra with gl.dimΛ ≤ n. Then
the following are equivalent.

(1) Λ is n-representation-finite,
(2) DΛ ∈ U ,
(3) νU = U .

2.3. n-Amiot-cluster categories and (n+ 1)-preprojective algebras.

Definition 2.7 (see [Ami1, Ami2]). We denote by DΛ/νn the orbit category, that
is, Ob DΛ/νn = Ob DΛ, and

HomDΛ/νn
(X,Y ) =

⊕
i∈Z

HomDΛ
(X, νinY ).

We denote by Cn
Λ the n-Amiot-cluster category, that is, the triangulated hull (see

[Ami1, Ami2]; we do not give a definition because for the purposes in this paper
it does not matter if we think of the orbit category or the n-Amiot-cluster cate-
gory). We denote by π : DΛ Cn

Λ the functor induced by projection onto the orbit
category.
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Lemma 2.8 (Amiot [Ami1, Ami2]). Let Λ be an algebra with gl.dimΛ ≤ n. The
n-Amiot-cluster category Cn

Λ is Hom-finite if and only if τ−i
n Λ = 0 for sufficiently

large i.
In particular, it is Hom-finite for any n-representation-finite algebra.

Theorem 2.9 (Amiot [Ami1, Ami2]). Let Λ be an algebra with gl.dimΛ ≤ n such
that Cn

Λ is Hom-finite. Then πΛ is an n-cluster tilting object in Cn
Λ.

Observation 2.10. Note that addπΛ is the image of U under the functor of
the derived category to the n-Amiot-cluster category as indicated in the following
diagram:

U addπ(Λ)

DΛ Cn
Λ.

π

Definition 2.11. Let Λ be an algebra with gl.dimΛ ≤ n. The (n+1)-preprojective

algebra Λ̂ of Λ is the tensor algebra of the bimodule ExtnΛ(DΛ,Λ) over Λ:

Λ̂ := TΛ ExtnΛ(DΛ,Λ).

(See [Kel1] or [Kel3] for a motivation for this name.)

Proposition 2.12. The (n+1)-preprojective algebra Λ̂ is isomorphic to the endo-
morphism ring

EndDΛ/νn
(Λ) ∼= EndCn

Λ
(πΛ).

Proof. The proof of [Ami2, Proposition 5.2.1] or [Ami1, Proposition 4.7] carries
over. �

3. n-APR tilting

In this section we introduce n-APR tilting and prove some general properties.
In Subsection 3.1 we introduce the notion of (weak) n-APR tilting modules and

study their basic properties.
In Subsection 3.2 we will give a concrete description of the n-APR tilted algebra

in terms of one-point (co)extensions. Namely, if Λ is a one-point coextension of
EndΛ(Q)op by a module M , then the n-APR tilt is the one-point extension of
EndΛ(Q)op by Trn−1 M . This result will allow us to give an explicit description of
the quivers and relations in case n = 2 in Subsection 3.3.

Finally, in Subsection 3.4 we introduce a version of APR tilting in the language
of derived categories.

3.1. n-APR tilting modules.

Definition 3.1. Let Λ be a basic finite dimensional algebra and n ≥ 1. Let P be
a simple projective Λ-module satisfying ExtiΛ(DΛ, P ) = 0 for any 0 ≤ i < n. We
decompose Λ = P ⊕Q. We call

T := (τ−n P )⊕Q

the weak n-APR tilting module associated with P . If moreover idP = n, then we
call T an n-APR tilting module and we call EndΛ(T )

op an n-APR tilt of Λ.
Dually we define (weak) n-APR cotilting modules.
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The more general notion of n-BB tilting modules has been introduced in [HX].
The following result shows that weak n-APR tilting modules are in fact tilting

Λ-modules.

Theorem 3.2. Let Λ be a basic finite dimensional algebra, and let T be a weak
n-APR tilting Λ-module (as in Definition 3.1). Then T is a tilting Λ-module with
pdΛ T = n.

We also have the following useful properties.

Proposition 3.3. Let T = (τ−n P )⊕Q be a weak n-APR tilting Λ-module. Then:

(1) ExtiΛ(T,Λ) = 0 for any 0 < i < n.
(2) If moreover T is n-APR tilting, then HomΛ(τ

−
n P,Λ) = 0.

For the proof of Theorem 3.2 and Proposition 3.3, we use the following observa-
tion on tilting mutation due to Riedtmann-Schofield [RS].

Lemma 3.4 (Riedtmann-Schofield [RS]). Let T be a Λ-module and

Y
g

T ′ f
X

be an exact sequence with T ′ ∈ addT . Then the following conditions are equivalent.

• T ⊕X is a tilting Λ-module and f is a right (addT )-approximation.
• T ⊕ Y is a tilting Λ-module and g is a left (addT )-approximation.

Proof of Theorem 3.2 and Proposition 3.3. Take a minimal injective resolution

(1) 0 P I0 · · · In−1

g
In.

Applying D, we have an exact sequence

(2) DIn
Dg

DIn−1 · · · DI0 DP 0.

Applying the functor (−)∗ = HomΛop(−,Λ) to this projective resolution of DP , we
obtain a complex

0 (DI0)
∗ · · · (DIn)

∗ 0.

By definition the homology in its rightmost term is τ−n P , and since ExtiΛ(DΛ, P ) =
0 for 0 ≤ i < n all other homologies vanish. Since (DI0)

∗ is an indecomposable
projective Λ-module with top(DI0)

∗ = Soc I0 = P , we have (DI0)
∗ = P . Thus we

have an exact sequence

(3) 0 P (DI1)
∗ · · ·

(Dg)∗

(DIn)
∗ f

τ−n P 0.

So we have pd ΛT = n. Since P is a simple projective Λ-module, we have (DIi)
∗ ∈

addQ for 0 < i ≤ n.
Applying the functor (−)∗ to the sequence (3), we have an exact sequence (2).

Thus we have Proposition 3.3(1). If idP = n, then g in (1) is surjective and Dg in
(2) is injective. Since (Dg)∗∗ = Dg we have

HomΛ(τ
−
n P,Λ) = (τ−n P )∗ = (Cok(Dg)∗)∗ = Ker(Dg)∗∗ = KerDg = 0.

Thus we have Proposition 3.3(2).
Note that we have a functorial isomorphism

HomΛ((DIi)
∗,−) ∼= (DIi)⊗Λ −.
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Applying the functors−⊗ΛQ and HomΛ(−, Q) to sequences (2) and (3) respectively,
the above isomorphism gives rise to to a commutative diagram

(DIn)⊗Λ Q · · · (DI1)⊗Λ Q (DI0)⊗Λ Q 0

HomΛ((DIn)
∗, Q) · · · HomΛ((DI1)

∗, Q) HomΛ((DI0)
∗, Q) 0

∼ = ∼ = ∼ =

of exact sequences. Thus (3) is a left (addQ)-approximation sequence of P , and
we have that T is a tilting Λ-module by using Lemma 3.4 repeatedly. �

We recall the following result from tilting theory [Hap]: For a tilting Λ-module
T with Γ := EndΛ(T )

op, we have functors

F := RHomΛ(T,−) : DΛ DΓ,

Fi := ExtiΛ(T,−) : modΛ modΓ (i ≥ 0).

Put

Fi := {X ∈ modΛ | ExtjΛ(T,X) = 0 for any j 
= i},
Xi := {Y ∈ modΓ | TorΓj (T, Y ) = 0 for any j 
= i}.

Lemma 3.5 (Happel [Hap]). • F = RHomΛ(T,−) : DΛ DΓ is an equiv-
alence.

• For any i ≥ 0, we have an equivalence Fi := ExtiΛ(T,−) : Fi Xi which
is isomorphic to the restriction of [i] ◦ F.

• For any X ∈ F0, there exists an exact sequence

0 Tm · · · T0 X 0

with Ti ∈ addT and m ≤ gl.dimΛ.

We now prove the following result which says that the class of algebras of global
dimension at most n is closed under n-APR tilting.

Proposition 3.6. If gl.dimΛ = n and T is an n-APR tilting Λ-module, then
gl.dimΓ = n holds for Γ := EndΛ(T )

op.

Proof. We only have to show that pdΓ(topF0X) ≤ n for any indecomposable X ∈
addT .

(i) First we consider the case X ∈ addQ. Since gl.dimΛ = n, we can take a
minimal projective resolution

0 Pn · · · P1

f
X topX 0.

Since HomΛ(τ
−
n P,Λ) = 0 by Proposition 3.3(2), we have that any morphism T X

which is not a split epimorphism factors through f .
Applying HomΛ(T,−), we have an exact sequence

0 F0Pn · · · F0P1

F0f
F0X

since we have ExtiΛ(T,Λ) = 0 for any 0 < i < n by Proposition 3.3(1). Moreover the
above observation implies CokF0f = topF0X. Thus we have pd Γ(topF0X) ≤ n.
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(ii) Next we consider the case X = τ−n P . We will show that pdΓ(topF0τ
−
n P ) is

precisely n. Applying F0 to the sequence (3) in the proof of Theorem 3.2, we have
an exact sequence

0 = F0P F0(DI1)
∗ · · · F0(DIn)

∗ F0f
F0τ

−
n P

since we have ExtiΛ(T,Λ) = 0 for any 0 < i < n by Proposition 3.3(1).
Since Q, (DIn)

∗, and τ−n P are in F0, we have a commutative diagram

HomΓ(F0Q,F0(DIn)
∗) HomΓ(F0Q,F0τ

−
n P )

HomΛ(Q, (DIn)
∗) HomΛ(Q, τ−n P ) 0

∼ = ∼ =

F0f

f

where the lower sequence is exact since Q is a projective Λ-module. Since

EndΓ(F0τ
−
n P ) ∼= EndΛ(τ

−
n P )

= EndΛ(τ
−
n P ) (Proposition 3.3(2))

∼= EndΛ(Ω
−(n−1)P ) (AR-translation)

∼= EndΛ(P ) (since ExtiΛ(DΛ, P ) = 0 ∀i ∈ {1, . . . , n− 1};
see for instance [AB]),

any non-zero endomorphism of F0τ
−
n P is an automorphism. Thus F0f is a right

almost split map in addΓ, and we have CokF0f = topF0τ
−
n P and pdΓ(topF0τ

−
n P )

= n. �

Later we shall use the following observation.

Lemma 3.7. Under the circumstances in Theorem 3.2, we have the following.

(1) P ∈ Fn.
(2) FnP is a simple Γ-module. If idP = n, then FnP is an injective Γ-module.

Proof. (1) follows immediately from Proposition 3.3 and the fact that P is simple.
(2) By AR-duality we have

FnP = ExtnΛ(T, P ) ∼= Ext1Λ(T,Ω
−(n−1)P ) ∼= DHomΛ(τ

−
n P, T ).

First we show that FnP is a simple Γ-module. Since FnP ∼= DHomΛ(τ
−
n P, T ) =

DEndΛ(τ
−
n P ), any composition factor of the Γ-module FnP is isomorphic. Thus

we only have to show that EndΓ(FnP ) is a division ring. By Lemma 3.5, we have
EndΓ(FnP ) ∼= EndΛ(P ). Thus the assertion follows.

Next we show the second assertion. Since we have HomΛ(τ
−
n P,Λ) = 0 by Propo-

sition 3.3, we have FnP ∼= DHomΛ(τ
−
n P, T ) = DHomΛ(τ

−
n P, T ). Thus FnP is an

injective Γ-module. �

3.2. n-APR tilting as a one-point extension. Let Λ be a finite dimensional
algebra, M ∈ modΛop and N ∈ modΛ. Slightly more general than “classical” one-
point (co)extensions, we consider the algebras (K M

Λ ) and (KN Λ) if K is a finite skew-
field extension of our base field k, such that K ⊆ EndΛop(M) and K ⊆ EndΛ(N)op,
respectively.

Now let Λ be a basic algebra which has a simple projective module P . We
set KP = EndΛ(P )op. Let Q be the direct sum over the other indecomposable
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projective Λ-modules, that is, Λ = P ⊕ Q. We set ΛP := EndΛ(Q)op and MP :=

HomΛ(P,Q) ∈ mod(KP ⊗kΛ
op
P ). Then we have an isomorphism Λ ∼=

(
KP MP

ΛP

)
, and

P is identified with the module
(
KP
0

)
.

Theorem 3.8. Assume Λ is a basic finite dimensional algebra with simple projec-
tive module P and that n > 1. Then the following are equivalent:

(i) P gives rise to an n-APR tilting module,
(ii) MP has the following properties:

• pdΛop
P
MP = n− 1,

• ExtiΛop
P
(MP ,ΛP ) = 0 for 0 ≤ i ≤ n− 2,

• ExtiΛop
P
(MP ,MP ) = 0 for 1 ≤ i ≤ n− 2 and

• EndΛop
P
(MP ) = KP .

Moreover, if the above conditions are satisfied and Γ = EndΛ((τ
−
n P )⊕Q)op, then

Γ ∼=
(

KP

Trn−1 MP ΛP

)
.

Remark 3.9. The object Trn−1 MP is uniquely determined only up to projective
summands. In this section we always understand Trn−1 MP to be constructed using
a minimal projective resolution or, equivalently, Trn−1 MP to not have any non-zero
projective summands.

Proof of Theorem 3.8. Let

0 DMP I0 I1 · · ·
be an injective resolution of the ΛP -module DMP . Then the injective resolution of
the Λ-module P =

(
KP
0

)
is

0

(
KP

0

) (
KP

DMP

) (
0
I0

) (
0
I1

)
· · · .

Hence pdΛop
P
MP = idΛP

DMP = idΛ P − 1. In particular, we have idΛ P = n ⇐⇒
pdΛop

P
MP = n− 1.

Moreover, for any i ≥ 1 and any I ∈ inj ΛP we have

ExtiΛ((
0
I) , P ) = Exti−1

ΛP
(I,DMP )

= Exti−1
Λop

P
(MP , DI).

(Note that the first equality also holds for i = 1, since there are no non-zero maps

from (0I) to the injective Λ-module
(

KP

DMP

)
.)

Finally we look at extensions between P and the corresponding injective module.
For i > 1 we have

ExtiΛ(
(

KP

DMP

)
, P ) = Exti−1

Λ (
(

KP

DMP

)
,
(

0
DMP

)
)

= Exti−1
ΛP

(DMP , DMP )

= Exti−1
Λop

P
(MP ,MP ).

For i = 1 we obtain

Ext1Λ(
(

KP

DMP

)
, P ) = HomΛ(

(
KP

DMP

)
,
(

0
DMP

)
)/

(
EndΛ(

(
KP

DMP

)
) · [

(
KP

DMP

) (
0

DMP

)
]
)

∼= EndΛP
(MP )/KP .

This proves the equivalence of (i) and (ii).
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For the second claim note that by Proposition 3.3(2) we have HomΛ(τ
−
n P,Q) = 0.

Therefore it only remains to verify HomΛ(Q, τ−n P ) = Trn−1 MP and EndΛ(τ
−
n P )op

= KP . This follows by looking at the injective resolution of P above and applying
D to it to obtain (a projective resolution of) τ−n P . �

3.3. Quivers for 2-APR tilts. In this subsection we give an explicit description
of 2-APR tilts in terms of quivers with relations.

Remark 3.10. For comparison, recall the classical case (n = 1): Assume Λ =
kQ/(R) and the set of relations R is minimal (∀r ∈ R : r 
∈ (R \ {r})). Simple
projective modules correspond to sources of Q. Let P be a simple projective, and
let i ∈ Q0 be the corresponding vertex. Then idP = 1 ⇐⇒ no relation in R involves
a path starting in i. In this situation we have

ΛP = k[Q \ {i}]/(R), MP =
⊕
a∈Q1

s(a)=i

P ∗
e(a), and Γ = kQ′/(R),

where Q′ is the quiver obtained from Q by reversing all arrows starting in i.

For n = 2 we have to take into account the second cosyzygy of P , which corre-
sponds to relations involving the corresponding vertex of the quiver.

Let Λ = kQ/(R) be a finite dimensional k-algebra presented by a quiver Q =
(Q0, Q1) with relations R (which is assumed to be a minimal set of relations). Let
P be a simple projective Λ-module associated to a source i of Q. We define a quiver
Q′ = (Q′

0, Q
′
1) with relations R′ as follows:

Q′
0 = Q0,

Q′
1 = {a ∈ Q1 | s(a) 
= i} � {r∗ : e(r) i | r ∈ R, s(r) = i},

where r∗ is a new arrow associated to each r ∈ R with s(r) = i. We write r ∈ R
with s(r) = i as

r =
∑
a∈Q1

s(a)=i

ara,

and define a∗ ∈ kQ′ for each a ∈ Q1 with s(a) = i by

a∗ :=
∑
r∈R

s(r)=i

rar
∗ ∈ kQ′.

Now we define a set R′ of relations on Q′ by

R′ = {r ∈ R | s(r) 
= i} � {a∗ : e(a) i | a ∈ Q1, s(a) = i}.

Theorem 3.11. Let Λ = kQ/(R) and let P be a simple projective Λ-module. As-
sume that P gives rise to a 2-APR tilting Λ-module T . Then EndΛ(T ) is isomorphic
to kQ′/(R′) (with Q′ and R′ as explained above).

Remark 3.12. Roughly speaking, Theorem 3.11 means that arrows in Q starting in
i become relations and that relations become arrows.

Let us start with the following general observation.
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Observation 3.13. Let Δ = kQ/(R) be a finite dimensional k-algebra presented
by a quiverQ with relations R. LetM be a Δ-module with a projective presentation

⊕
1≤n≤N

Pjn

(rn�) ⊕
1≤�≤L

Pi� M 0

for rn� ∈ kQ. Then the one-point coextension algebra
(
k
M Δ

)
is isomorphic to

kQ̃/(R̃) for the quiver Q̃ = (Q̃0, Q̃1) with relations R̃ defined by

Q̃0 = Q0 � {i},
Q̃1 = Q1 � {a� : i� i | 1 ≤ � ≤ L},

R̃ = R � {
∑

1≤�≤L

rn�a� | 1 ≤ n ≤ N}.

Now we are ready to prove Theorem 3.11.

Proof of Theorem 3.11. We can write Λ =
(
k MP

ΛP

)
as in Subsection 3.2. Let QP

be the quiver obtained from Q by removing the vertex i, and let RP := {r ∈ R |
s(r) 
= i}. Then we have

(4) ΛP
∼= kQP /(RP ).

By Theorem 3.8 we have

(5) EndΛ(T ) =

(
ΛP

TrMP k

)
.

Since we have a minimal projective resolution

⊕
r∈R

s(r)=i

P ∗
e(r)

(ra) ⊕
a∈Q1

s(a)=i

P ∗
e(a) MP 0

of the Λop
P -module MP , we have a projective resolution

(6)
⊕
a∈Q1

s(a)=i

Pe(a)

(ra) ⊕
r∈R

s(r)=i

Pe(r) TrMP 0

of the ΛP -module TrMP . Applying Observation 3.13 to the one-point coextension
(5), we have the assertion from (4) and (6). �

For example, we could take Q to be the Auslander-Reiten quiver of A3 and R
to be the mesh relations. Then kQ/(R) is the Auslander algebra. See Tables 1
(linear oriented A3) and 2 (non-linear oriented A3) for the iterated 2-APR tilts of
these Auslander algebras. In the pictures a downward line is a 2-APR tilt. Vertices
labeled T are sources that have an associated 2-APR tilt, and vertices labeled C
are sinks having an associated 2-APR cotilt. Sources and sinks that do not admit
a 2-APR tilt or cotilt are marked X.

Note that there are no X’s occurring in Table 1. In fact, by [Iya1, Theorem 1.18]
(see Theorem 5.7) the Auslander algebras of linear oriented An are 2-representation-
finite, and hence every source and sink has an associated 2-APR tilt and cotilt,
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Table 1. Iterated 2-APR tilts of the Auslander algebra of linear
oriented A3

T C

T C

C T

T

C C

T

C

T

T

C

T C

C

T

=

=

respectively. We will more closely investigate n-APR tilts on n-representation-
finite algebras in Section 4 and the particular algebras coming from linear oriented
An in Section 5.

3.4. n-APR tilting complexes. As in Section 2.2, throughout this section we
assume Λ to be a basic finite dimensional algebra of finite global dimension. We will
constantly use the functors ν and νn introduced in the first paragraph of Section 2.2.

Definition 3.14. Let n ≥ 1, and let Λ = P ⊕ Q be any direct summand decom-
position of the Λ-module Λ such that

(1) HomΛ(Q,P ) = 0 and
(2) ExtiΛ(νQ, P ) = 0 for any 0 < i 
= n.

Clearly (1) implies HomΛ(νQ, P ) = 0, so (2) also holds for i = 0.
We call

T := (ν−n P )⊕Q

the n-APR tilting complex associated with P .
By abuse of notation (see Remark 3.15 below for a justification), we also call

EndDΛ
(T )op an n-APR tilt of Λ.

Remark 3.15. (1) Any n-APR tilting module (τ−n P )⊕Q in the sense of Defini-
tion 3.1 is an n-APR tilting complex, since in that case ν−n P = τ−n P holds
(under the assumption that Λ has finite global dimension).

(2) Weak n-APR tilting modules are in general not n-APR tilting complexes.
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Table 2. Iterated 2-APR tilts of the Auslander algebra of non-
linear oriented A3

C

T

C

T X

C

T X

C

T X

T X

C

C

T

C

T

X C

T

C

X

T

T

X

C

C

T

C

=

=

Remark 3.16. In the setup of Definition 3.14 there is no big difference between
tilting and cotilting: The n-APR tilting complex (ν−n P ) ⊕ Q associated to P and
the n-APR cotilting complex νP ⊕ νnνQ associated to (the injective module) νQ
are mapped to each other by the autoequivalence νnν of the derived category.
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In the rest of this subsection we will show that n-APR tilting complexes are
indeed tilting complexes, and that they preserve the property gl.dim ≤ n.

Theorem 3.17. Let Λ be an algebra of finite global dimension, and let T be an
n-APR tilting complex (as in Definition 3.14). Then T is a tilting complex in DΛ.

Remark 3.18. More generally, in Theorem 3.17 it is possible to replace the assump-
tion that Λ has finite global dimension by the weaker assumption that P has finite
injective dimension. (In this case ν−n P = RHomΛ(DΛ, P )[n] is still in Kb(proj Λ),
the homotopy category of complexes of finitely generated projective Λ-modules.)

Proof of Theorem 3.17. We have to check that T has no self-extensions and that
T generates the derived category DΛ. We first check that T has no self-extensions.
Clearly for all i 
= 0 we have HomDΛ

(ν−n P, ν−n P [i]) = 0 and HomDΛ
(Q,Q[i]) = 0.

Moreover

HomDΛ
(ν−n P,Q[i]) = HomDΛ

(ν−P,Q[i− n]) = DHomDΛ
(Q[i− n], P )

= 0 ∀i ∈ Z.

Finally HomDΛ
(Q, ν−n P [i]) = Extn+i

Λ (νQ, P ), which vanishes for i 
= 0 by assump-
tion (2) of the definition.

Now we prove that T generates DΛ. Let X ∈ DΛ such that HomDΛ
(ν−P [i], X) =

0 and HomDΛ
(Q[i], X) = 0 for all i. By the latter property we see that the homology

of X does not contain any composition factors in add(topQ). We can assume that
X is a complex

· · · di−1

Xi di

Xi+1 di+1

· · ·
in Kb(proj Λ), such that Im di ⊆ RadXi+1 for any i.

Assume there is an i such that Xi 
∈ addP . Let iM be the maximal i with
this property. Let Q′ ∈ addQ be a non-zero summand of XiM . Since XiM+1 ∈
addP by our choice of iM , we have HomΛ(Q

′, XiM+1) ∈ addHomΛ(Q,P ) = 0 (see
Definition 3.14(1)). Hence we have Q′ ⊆ Ker diM . Since Im diM−1 ⊆ RadXiM ,
we have Q′ 
⊆ Im diM−1, and hence HomDΛ

(Q′, X[iM ]) 
= 0, a contradiction to our
choice of X. Consequently, we have X ∈ Kb(addP ).

Now we assume X 
= 0. Let iN be the minimal i such that Xi 
= 0. Since
XiN ∈ addP we have HomDΛ

(X[iN ], P ) 
= 0. This is a contradiction to our choice
of X, since HomDΛ

(X[iN ], P ) = DHomDΛ
(ν−n P,X[n+ iN ]). �

The following result generalizes Proposition 3.6 to the setup of n-APR tilting
complexes.

Proposition 3.19. If gl.dimΛ ≤ n and T is an n-APR tilting complex in DΛ,
then for Γ := EndDΛ

(T )op we have gl.dimΓ ≤ n.

Proof. By [Ric] the algebra Γ has finite global dimension, and hence

gl.dimΓ = max{i | ExtiΓ(νΓ,Γ) 
= 0}
= max{i | HomDΓ

(νΓ,Γ[i]) 
= 0}
= max{i | HomDΛ

(νT, T [i]) 
= 0}.
Clearly gl.dimΛ ≤ n implies that for i > n we have HomDΛ

(νν−n P, ν−n P [i]) =

ExtiΛ(νP, P ) = 0 and HomDΛ
(νQ,Q[i]) = ExtiΛ(νQ,Q) = 0. We have

HomDΛ
(νν−n P,Q[i]) = HomDΛ

(P,Q[i− n]),
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which is non-zero only for i = n. Finally

HomDΛ
(νQ, ν−n P [i]) = HomDΛ

(ν2Q,P [n+ i]).

Since νQ ∈ modΛ and gl.dimΛ ≤ n it follows that ν2Q has non-zero homology
only in degrees −n, . . . , 0. Hence the above Hom-space vanishes for i > n, since
gl.dimΛ ≤ n.

Summing up we obtain HomDΛ
(νT, T [i]) = 0 for i > n, which implies the claim

of the theorem by the remark at the beginning of the proof. �

Recall the definition of the subcategory

Un
Λ = add{νinΛ | i ∈ Z} ⊆ DΛ

given in Section 2.2.

Proposition 3.20. Let Λ be n-representation-finite, and let T be an n-APR tilting
complex in DΛ. Let Γ := EndDΛ

(T )op. Then the derived equivalence

RHomΛ(T,−) : DΛ DΓ

(see [Kel2]) induces an equivalence Un
Λ Un

Γ .

Proof. This is clear since the derived equivalence RHomΛ(T,−) commutes with νn
and T ∈ Un

Λ . �

An application of Proposition 3.20 we will use in Subsection 4.4 is the following.

Proposition 3.21. The (n + 1)-preprojective algebra (see Definition 2.11) is in-
variant under n-APR tilts.

Proof. By Propositions 3.20 and 2.12 we have

Λ̂ = EndUn
Λ/νn

(Λ) = EndUn
Λ/νn

(T ) = EndUn
Γ /νn

(Γ) = Γ̂. �

4. n-APR tilting for n-representation-finite algebras

In this section we study the effect of n-APR tilts on n-representation-finite al-
gebras.

The first main result is that n-APR tilting preserves n-representation-finiteness
(Theorems 4.2 and 4.7). We give two independent proofs for this fact. In Subsec-
tion 4.1 we study n-APR tilting modules for n-representation-finite algebras. We
give an explicit description of a cluster tilting object in the new module category
in terms of the cluster tilting object of the original algebra (Theorem 4.2). In Sub-
section 4.2 we give an independent proof (which is less explicit and relies heavily
on a result from [IO]) that the more general procedure of tilting in n-APR tilting
complexes also preserves n-representation-finiteness.

In Subsections 4.3 and 4.4 we introduce the notions of slices and admissible sets,
which classify, for a given n-representation-finite algebra, all iterated n-APR tilts
(see Theorem 4.23).

Throughout this section, let Λ be an n-representation-finite algebra. For sim-
plicity of notation we assume Λ to be basic.
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4.1. n-APR tilting modules preserve n-representation-finiteness. The fol-
lowing proposition shows that the setup of n-representation-finite algebras is par-
ticularly well-suited for looking at n-APR tilts.

Observation 4.1. (1) Any simple projective and non-injective Λ-module P
admits an n-APR tilting Λ-module.

(2) Any simple injective and non-projective Λ-module I admits an n-APR
cotilting Λ-module.

Proof. We have idP ≤ n by gl.dimΛ ≤ n. Since the n-cluster tilting object is an
n-rigid generator-cogenerator, we have ExtiΛ(DΛ, P ) = 0 for any 0 < i < n. This
proves (1); the proof of (2) is dual. �

Throughout this subsection, we denote by M the unique basic n-cluster tilting
object in modΛ (see the last point of Proposition 2.3).

Now let P be a simple projective and non-injective Λ-module. We decompose
Λ = P ⊕Q. Since P ∈ addM we can also decompose M = P ⊕M ′. By Observa-
tion 4.1 we have an n-APR tilting Λ-module T := (τ−n P )⊕Q.

Theorem 4.2. Under the above circumstances, we have the following.

(1) T ∈ addM .
(2) Γ := EndΛ(T )

op is an n-representation-finite algebra with n-cluster tilting
object N := HomΛ(T,M

′)⊕ ExtnΛ(T, P ).

Before we prove the theorem let us note the following immediate consequence.

Corollary 4.3. Any iterated n-APR tilt of an n-representation-finite algebra is
n-representation-finite.

In the rest of this subsection we shall show Theorem 4.2. Assertion (1) follows
immediately from the first part of Proposition 2.3.

Proposition 3.6 proves that gl.dimΓ = n in Theorem 4.2. We shall show that
N in Theorem 4.2(2) is an n-cluster tilting object. We will use the subcategories
Fi ⊆ modΛ and the functors Fi which were introduced in Section 3.1 (see in
particular Lemma 3.5).

Lemma 4.4. M ′ ∈ F0.

Proof. By Theorem 4.2(1) we know that T ∈ addM . Hence, since M is an n-rigid
Λ-module, we have ExtiΛ(T,M) = 0 for any 0 < i < n. Since gl.dimΛ ≤ n, we
only have to check ExtnΛ(T,M

′) = 0. Of course, we have ExtnΛ(Q,M ′) = 0 since Q
is projective. By Proposition 2.3, we have ExtnΛ(τ

−
n P,M ′) ∼= DHomΛ(M

′, P ), and
the latter Hom-space vanishes since P is simple projective. �

Lemma 4.5. N = F0M
′ ⊕ FnP is an n-rigid Γ-module.

Proof. We have ExtiΓ(−,FnP ) = 0 for any i > 0 since FnP is injective (see Lemma
3.7(2)). Since M ′ ∈ F0 and P ∈ Fn by Lemma 4.4 and Lemma 3.7(1) respectively,
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we can check the assertion as follows by using Lemma 3.5:

ExtiΓ(F0M
′,F0M

′) = HomDΓ
(FM ′,FM ′[i])

∼= HomDΛ
(M ′,M ′[i])

= ExtiΛ(M
′,M ′),

ExtiΓ(FnP,F0M
′) = HomDΓ

(FP [n],FM ′[i])

∼= HomDΛ
(P,M ′[i− n])

= Exti−n
Λ (P,M ′).

For 0 < i < n both of the above vanish, since M is n-rigid. �

We now complete the proof of Theorem 4.2.

Proof of Theorem 4.2(2). By Lemma 4.5 we know that N is n-rigid, and hence we
may apply Proposition 2.4. We will show that N is n-cluster tilting by checking
the third of the equivalent conditions in Proposition 2.4(3).

(i) First we consider FnP . Take a minimal injective resolution

0 P I0 · · · In 0.

By Proposition 3.3 we have ExtiΛ(T, P ) = 0 for 0 ≤ i < n. Hence, applying
HomΛ(T,−), we have an exact sequence

0 F0I0 · · · F0In
f

FnP 0

with F0Ii ∈ addN . We shall show that f is a right almost split map in addN .
By Lemma 3.5, we have ExtjΓ(F0M

′,F0Ii) ∼= ExtjΛ(M
′, Ii) = 0 for any i and any

j > 0. Using this, we see that the map

HomΓ(F0M
′,F0In)

f
HomΓ(F0M

′,FnP )

is surjective. Since FnP is a simple injective Λ-module by Lemma 3.7, any non-zero
endomorphism of FnP is an automorphism. Thus f is a right almost split map in
addN .

(ii) Next we consider F0X for any indecomposable X ∈ addM ′. Since M is an
n-cluster tilting object in modΛ, we have an exact sequence

0 Mn · · · M0

f
X

with Mi ∈ addM and a right almost split map f in addM by Proposition 2.4.
Applying F0, we have an exact sequence

0 F0Mn · · · F0M0

F0f
F0X

since we have ExtiΛ(T,M) = 0 for any 0 < i < n. Since F0Mi ∈ addN , we only
have to show that F0f is a right almost split map in addN .

Since FnP is a simple injective Λ-module by Lemma 3.7, there is no non-zero map
from FnP to F0X. Thus we only have to show that any morphism g : F0M

′ F0X
which is not a split epimorphism factors through f . By Lemma 3.5, we can put
g = F0h for some h : M ′ X which is not a split epimorphism. Since h factors
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through f , we have that g = F0h factors through F0f . Thus we have shown that
F0f is a right almost split map in addN . �

4.2. n-APR tilting complexes preserve n-representation-finiteness. Simi-
lar to Observation 4.1 we have the following result for n-representation-finite alge-
bras.

Observation 4.6. Let Λ = P⊕Q as Λ-modules, such that HomΛ(Q,P ) = 0. Then
P has an associated n-APR tilting complex.

We have the following result.

Theorem 4.7. Let Λ be n-representation-finite, and let T be an n-APR tilting
complex in DΛ. Then EndDΛ

(T )op is also n-representation-finite.

Proof. We set Γ = EndDΛ
(T )op. By Proposition 3.19 we know that, since gl.dimΛ

≤ n, we also have gl.dimΓ ≤ n.
By Proposition 3.20 we know that the derived equivalence DΛ DΓ induces an

equivalence UΛ UΓ. Hence, by Theorem 2.6 we have

Λ is n-representation-finite ⇐⇒ νUΛ = UΛ

⇐⇒ νUΓ = UΓ

⇐⇒ Γ is n-representation-finite. �

4.3. Slices. In this subsection we introduce the notion of slices in the n-cluster
tilting subcategory U (see Definition 4.8). The aim is to provide a bijection between
these slices and the iterated n-APR tilting complexes of Λ (Theorem 4.15). This
will be done by introducing a notion of mutation of slices (Definition 4.12) and by
proving that this mutation coincides with n-APR tilts.

Throughout, let Λ be an n-representation-finite algebra. We consider the n-
cluster tilting subcategory U = Un

Λ ⊆ DΛ given in Section 2.2.

Definition 4.8. An object S ∈ U is called a slice if

(1) for any indecomposable projective module P there is exactly one i such
that νinP ∈ addS and

(2) addS is convex, which means that any path (that is, any sequence of non-
zero maps) in indU , which starts and ends in addS, lies entirely in addS.

The following two observations give us the slices in which we are interested.

Observation 4.9. In the setup above, Λ ∈ U is a slice, since we have

HomDΛ
(νinΛ, ν

j
nΛ) = H0(νj−i

n Λ) = 0

if i < j.
Similarly, by Theorem 4.7 and Proposition 3.20, any iterated n-APR tilting

complex of Λ is a slice in U .

Proposition 4.10. Let S be a slice. Then HomDΛ
(S, νinS) = 0 for any i > 0.

For the proof we will need the following observation:

Lemma 4.11. Assume Λ is indecomposable (as a ring) and not semi-simple. For
any indecomposable X ∈ U there is a path νnX X in U .
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Proof. Assume first that X is a non-projective Λ-module. By [Iya1, Theorem 2.2]
there is an n-almost split sequence

νnX = τnX Xn−1 · · · X1 X

with Xi ∈ U ∩modΛ. This sequence gives rise to the desired path νnX X in U .
Now let X ∈ U be arbitrary indecomposable. By [IO, Lemma 4.9] there exists

i ∈ Z such that νiX is a non-projective Λ-module. Then there exists a path
νnν

iX νiX in U . Since ν is an autoequivalence of U by Theorem 2.6, we have
a path νnX X in U . �
Proof of Proposition 4.10. We may assume Λ to be connected and not semi-simple.
Then, by the above lemma, for any indecomposable S′ ∈ addS there is a path
νnS

′ S′ in U . Hence there are also paths νinS
′ S′ for i > 0. If HomDΛ

(S, νinS
′)


= 0 for some i > 0, then we have νinS
′ ∈ addS by Definition 4.8(2), contradicting

4.8(1). �
Definition 4.12. Let S be a slice, and let S = S′ ⊕ S′′ be a direct summand
decomposition of S such that HomDΛ

(S′′, S′) = 0. We set

μ+
S′(S) = (ν−n S′)⊕ S′′ and

μ−
S′′(S) = S′ ⊕ (νnS

′′).

We call them mutations of S.

Lemma 4.13. In the setup of Definition 4.12, μ+
S′(S) and μ−

S′′(S) are slices again.

Proof. We restrict our attention to the case of μ+
S′(S). It is clear that it satisfies

condition (1) of Definition 4.8. To see that μ+
S′(S) is convex, let p be a path in

indU starting and ending in μ+
S′(S). We have the following four cases with respect

to where p starts and ends:

(1) If p starts and ends in S′′, then it lies entirely in S. Since HomDΛ
(S′′, S′) =

0 it lies entirely in S′′.
(2) Similarly, if p starts and ends in ν−n S′, then it lies entirely in ν−n S′.
(3) By Proposition 4.10 p cannot start in ν−n S′ and end in S′′.
(4) Assume that p starts in S′′ and ends in ν−n S′. Hence, by Proposition 4.10

the path p lies entirely in S ⊕ ν−n S. Then, since HomDΛ
(S′′, S′) = 0, it

can pass neither through S′ nor through ν−n S′′. Therefore it lies entirely in
μ+
S′(S).

Thus condition (2) of Definition 4.8 is also satisfied. �
Lemma 4.14. (1) Any two slices in U are iterated mutations of each other.

(2) If moreover the quiver of Λ contains no oriented cycles, then any two slices
are iterated mutations with respect to sinks or sources of each other.

Proof. Let Λ =
⊕

Pi be a decomposition into indecomposable projectives. We
choose di and ei such that the two slices are

⊕
νdi
n Pi and

⊕
νein Pi, respectively.

Since μ+
S (S) = ν−n S, we can assume ei > di for all i. We set I = {i | ei −

di is maximal},
S′ =

⊕
i∈I

νein Pi and S′′ =
⊕
j �∈I

νejn Pj .

Now for i ∈ I and j 
∈ I we have

HomDΛ
(νejn Pj , ν

ei
n Pi) = HomDΛ

(νdj
n Pj , ν

(ei−di)−(ej−dj)
n νdi

n Pi).
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Since by our choice of I we have (ei − di)− (ej − dj) > 0, the above space vanishes
by Proposition 4.10. Hence we may mutate and obtain

μ+
S′(

⊕
νein Pi) = (

⊕
i∈I

νei−1
n Pi)⊕ (

⊕
j �∈I

νejn Pj).

Repeating this procedure we see that any two slices are iterated mutations of each
other.

For the proof of the second claim first note that if the quiver of Λ contains no
oriented cycles, then neither does the quiver of U . So we can number the indecom-
posable direct summands of S′ as S′ = S′

1 ⊕ · · · ⊕ S′
� such that HomDΛ

(S′
i, S

′
j) = 0

for any i > j. Then we have μ+
S′(S) = μ+

S′
�
◦ · · · ◦ μ+

S′
1
(S) by Proposition 4.10. �

Theorem 4.15. Assume that Λ is n-representation-finite.

(1) The iterated n-APR tilting complexes of Λ are exactly the slices in U .
(2) If moreover the quiver of Λ contains no oriented cycles, then any iterated

n-APR tilting complex can be obtained by a sequence of n-APR (co)tilts in
the sense of Definition 3.1.

Proof. (1) By Observation 4.9 any iterated n-APR tilt comes from a slice. The
converse follows from Lemma 4.14(1) and Observation 4.6.

(2) follows similarly using Lemma 4.14(2) and Remark 3.15. �

4.4. Admissible sets. In this subsection we will see that all the endomorphism
rings of slices, and hence all the iterated n-APR tilts, of an n-representation-finite
algebra are obtained as quotients of the (n + 1)-preprojective algebra (see Defini-
tion 2.11).

Lemma 4.16. Let S be a slice in U . Then

HomU (S, ν
−i
n S) ⊆ RadiU (S, ν

−i
n S).

Proof. By Theorem 4.15 we may assume S to be the slice Λ. Then the claim follows
from Proposition 2.12. �

Construction 4.17. For P,Q ∈ addΛ indecomposable we choose

C0(P,Q) ⊆ RadU (P, ν
−
n Q) such that C0(P,Q) is a minimal generating set of

RadU (P, ν
−
n Q)/Rad2U (P, ν

−
n Q) as a EndU (P )op

RadEndU (P )op -
EndU (Q)op

RadEndU (Q)op -bimodule

and

H(P,Q) ⊆ RadU (P,Q) such that H(P,Q) is a minimal generating set of

RadU (P,Q)/Rad2U (P,Q) as a EndU (P )op

RadEndU (P )op -
EndU (Q)op

RadEndU (Q)op -bimodule.

We set

A(P,Q) = C0(P,Q)�H(P,Q) ⊆ HomCn
Λ
(P,Q).

We write C0 =
∐

P,Q C0(P,Q) and A =
∐

P,Q A(P,Q). Note that by Definition 2.11

the set A(P,Q) generates RadCn
Λ
(P,Q)/Rad2Cn

Λ
(P,Q).

If k is algebraically closed, then H consists of the arrows in the quiver of Λ,

and C0 consists of the additional arrows in the quiver of Λ̂. Thus A consists of all

arrows in the quiver of Λ̂.
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Lemma 4.18.

Λ ∼= Λ̂/(C0).

Proof. This follows from Proposition 2.12 and the definition of C0 above. �

Definition 4.19. (1) We call C0 as above the standard admissible set.
(2) For C ⊂ A and a decomposition Λ = Λ′ ⊕ Λ′′ (as modules) with

(a) addΛ′ ∩ addΛ′′ = 0,
(b) for P ∈ addΛ′ and Q ∈ addΛ′′ indecomposable we have C(P,Q) = ∅,
(c) for P ∈ addΛ′′ and Q ∈ addΛ′ indecomposable we have C(P,Q) =

A(P,Q)
we define a new subset μ+

Λ′(C) = μ−
Λ′′(C) ⊆ A by

μ+
Λ′(C)(P,Q) =

⎧⎪⎪⎨⎪⎪⎩
C(P,Q) if P ⊕Q ∈ addΛ′,
C(P,Q) if P ⊕Q ∈ addΛ′′,
A(P,Q) if P ∈ addΛ′ and Q ∈ addΛ′′,

∅ if P ∈ addΛ′′ and Q ∈ addΛ′.

That is, we remove from C all arrows addΛ′′ addΛ′, and we add all
arrows addΛ′ addΛ′′ in A.

We call this set a mutation of C.
(3) An admissible set is a subset of A which is an iterated mutation of the

standard admissible set.

We will now investigate the relation of slices in U and admissible sets.

Construction 4.20. Let S =
⊕

νsin Pi be a slice in U . We set

CS(Pi, Pj) = {ϕ ∈ A(Pi, Pj) | ϕ is a map Pi νsj−si−r
n Pj for some r > 0}.

Proposition 4.21. For any slice S in U we have

EndDΛ
(S)op ∼= Λ̂/(CS).

Proof. We have

EndDΛ
(S)op = HomDΛ

(S,
⊕

νinS)/(maps S ν−n S) (by 4.10 and 4.16)

= Λ̂/(CS) (by definition of CS). �

Proposition 4.22. (1) The map C? : S CS sends slices in U to admissible
sets. Moreover any admissible set is of the form CS for some slice S.

(2) C? commutes with mutations in the following way:

Cμ+

S′ (S) = μ+
Λ′(CS) and

Cμ−
S′′(S) = μ−

Λ′′(CS)

whenever S = S′⊕S′′ and Λ = Λ′⊕Λ′′ such that π(S′) ∼= π(Λ′) and π(S′′) ∼=
π(Λ′′) (recall that π denotes the map from the derived category to the n-
Amiot cluster category; see Definition 2.7). In particular the mutations of
slices are defined if and only if the mutations of admissible sets are defined.

Proof. By definition Λ is a slice and CΛ = C0 is the standard admissible set. We
now proceed by checking that all these properties are preserved under mutation.
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Assume we are in the setup of (2), that is, S = S′⊕S′′ is a slice and Λ = Λ′⊕Λ′′,
such that π(S′) ∼= π(Λ′) and π(S′′) ∼= π(Λ′′). We may further inductively assume
that CS is an admissible set:

all maps Λ̂′′ Λ̂′ in A lie in CS

⇐⇒HomDΛ
(S′′, S′) = 0 (by Proposition 4.21)

⇐⇒S′ admits a mutation (by Definition 4.12)

=⇒ μ+
S′(S) = ν−n S′ ⊕ S′′ is also a slice (by Lemma 4.13)

=⇒ HomU (S
′, ν−n S′′) ⊆ Rad2U (S

′, ν−n S′′) (by Lemma 4.16)

=⇒ no maps Λ̂′ Λ̂′′ in A lie in CS (by Proposition 4.21).

Therefore, the “in particular” part of (2) holds. Similar to the arguments above
one sees that Cμ+

S′ (S) = μ+
Λ′(CS).

Now the surjectivity in (1) follows from the fact that, by definition, any admis-
sible set is an iterated mutation of the standard admissible set. �

Theorem 4.23. Let Λ be n-representation-finite. Then the iterated n-APR tilts of

Λ are precisely the algebras of the form Λ̂/(C), where C is an admissible set.
In particular all these algebras are also n-representation-finite.

Proof. The first part follows from Propositions 4.21, 4.22 and Theorem 4.15. The
second part then follows by Theorem 4.7. �

5. n-representation-finite algebras of type A

The aim of this section is to construct n-representation-finite algebras of ‘type A’.
The starting point (and the reason we call these algebras type A) is the construction
of higher Auslander algebras of type As in [Iya1] (we recall this in Theorem 5.7
here). The main result of this section is Theorem 5.6, which gives an explicit
combinatorial description of all iterated n-APR tilts of these higher Auslander
algebras by removing certain arrows from a given quiver (see also Definitions 5.1
and 5.3 for the notation used in that theorem).

Definition 5.1. (1) For n ≥ 1 and s ≥ 1, let Q(n,s) be the quiver with vertices

Q
(n,s)
0 = {(�1, �2, . . . , �n+1) ∈ Z

n+1
≥0 |

n+1∑
i=1

�i = s− 1}

and arrows

Q
(n,s)
1 = {x i

x+ fi | i ∈ {1, . . . , n+ 1}, x, x+ fi ∈ Q
(n,s)
0 },

where fi denotes the vector

fi = (0, . . . , 0,
i
−1,

i+1
1, 0, . . . , 0) ∈ Z

n+1

(cyclically, that is fn+1 = (
1
1, 0, . . . , 0,

n+1
−1)).

(2) For n ≥ 1 and s ≥ 1, we define the k-algebra Λ̂(n,s) to be the path algebra
of Q(n,s) with the following relations.
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For any x ∈ Q
(n,s)
0 and i, j ∈ {1, . . . , n+1} satisfying x+fi, x+fi+fj ∈

Q
(n,s)
0 ,

(x
i
x+ fi

j
x+ fi + fj) =

{
(x

j
x+ fj

i
x+ fi + fj) if x+ fj ∈ Q

(n,s)
0 ,

0 otherwise.

(We will later show that this notation is justified: In Subsection 5.1 we

construct algebras Λ(n,s) such that Λ̂(n,s) is the (n+1)-preprojective algebra
of Λ(n,s); see also Proposition 5.48.)

Example 5.2. (1) The quiver Q(1,s) is the following:

(s− 1, 0) (s− 2, 1) (0, 0)· · · (1, s− 2) (0, s− 1).1 1 1 1
2 2 2 2

The algebra Λ̂(1,s) is the preprojective algebra of type As.
(2) The quiver Q(2,4) is

300

210

120

030

201

111

021

102

012

003.
1

1

1

1

1

12

2

2

2

2

2

3

3

3

3

3

3

The algebras Λ̂(2,s) appeared in the work of Geiss, Leclerc, and Schröer
[GLS1, GLS2].

(3) The quiver Q(3,3) is

2000

1100

0200

1010

0110

0020

1001

0101

0011

0002.

1

1

12

2

2

3

3

34

4

4

1 2

34

Definition 5.3. We call a subset C ⊆ Q
(n,s)
1 of the arrows of Q(n,s) cut, if it

contains exactly one arrow from each (n + 1)-cycle (see [BMR, BRS, BFP+] for
similar constructions).

Remark 5.4. (1) We will later show (see Remark 5.13) that cuts coincide with
admissible sets (as introduced in Definition 4.19).

(2) Clearly, in Definition 5.3, any (n+ 1)-cycle is of the form

x
σ(1)

x+ fσ(1)
σ(2)

x+ fσ(1)+ fσ(2)
σ(3)

· · ·
σ(n)

x+ fσ(1)+ · · ·+ fσ(n)
σ(n+1)

x,

for some σ ∈ Sn+1.
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Example 5.5. (1) Clearly the cuts of Q(1,s) correspond bijectively to orienta-
tions of the Dynkin diagram As.

(2) See Tables 1, 3 and 4 for the cuts of Q(2,3), Q(2,4), and Q(3,3), respectively.

We are now ready to state the main result of this section.

Theorem 5.6. (1) Let Q(n,s) be as in Definition 5.1, and let C be a cut. Then
the algebra

Λ
(n,s)
C := Λ̂(n,s)/(C)

is n-representation-finite.
(2) All these algebras (for fixed (n, s)) are iterated n-APR tilts of one another.

We call the algebras of the form Λ
(n,s)
C as in the theorem above n-representation-

finite of type A. Note that 1-representation-finite algebras of type A are exactly
path algebras of Dynkin quivers of type A. See Tables 1, 3, and 4 for the examples
(n, s) = (2, 3), (2, 4), and (3, 3), respectively.

5.1. Outline of the proof of Theorem 5.6.

Step 1. Let C0 be the set of all arrows of type n+ 1. This is clearly a cut. We set

Λ(n,s) := Λ
(n,s)
C0

.

For example, Λ(1,s) is a path algebra of the linearly oriented Dynkin quiver As,
and Λ(2,s) is the Auslander algebra of Λ(1,s). More generally, the following result is
shown in [Iya1].

Theorem 5.7 (see [Iya1]). The algebra Λ(n,s) is n-representation-finite. In partic-
ular, modΛ(n,s) has a unique basic n-cluster tilting object M (n,s). We have

Λ(n+1,s) ∼= EndΛ(n,s)(M (n,s))op,

that is, Λ(n+1,s) is the n-Auslander algebra of Λ(n,s).

Step 2. We now introduce mutation on cuts.

For simplicity of notation, we fix n and s for the rest of this section, and we omit
all superscripts −(n,s) whenever there is no danger of confusion. (That is, by Q we
mean Q(n,s), by Λ we mean Λ(n,s), and so forth.)

Definition 5.8. Let C be a cut of Q.

(1) We denote by QC the quiver obtained by removing all arrows in C from Q.
(2) Let x be a source of the quiver QC . Define a subset μ+

x (C) of Q1 by
removing all arrows in Q ending at x from C and adding all arrows in Q
starting at x to C.

(3) Dually, for each sink x of QC we get another subset μ−
x (C) of Q1.

We call the process of replacing a cut C by μ+
x (C) or μ−

x (C), when the conditions
of (2) or (3) above are satisfied, a mutation of cuts.

We will show in Proposition 5.14 in Subsection 5.2 that mutations of cuts are
again cuts.

Observation 5.9. The quiver QC is the quiver of the algebra kQ/(C).

The following remark explains the relationship between cuts and admissible sets.
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Table 3. Iterated 2-APR tilts of the Auslander algebra of linear
oriented A4 (thick lines indicate cuts)
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Table 4. Iterated 3-APR tilts of the higher Auslander algebra of
linear oriented A3 (thick lines indicate cuts)

=

=

Remark 5.10. (1) Whenever we mention admissible sets, it is implicitly under-
stood that we choose A = Q1 as the set of arrows in Q in Definition 4.19.
(It is shown in Subsection 4.4 that the choice of A does not matter there,
but with this choice we can more easily compare admissible sets and cuts.)

(2) When C is a cut and an admissible set, and x is a source of QC , then the
mutations μ+

x (C) of C as a cut and as an admissible set coincide.
(3) The standard admissible set C0, as defined in Construction 4.17 and Defi-

nition 4.19, is identical to the set C0 defined in Step 1. In particular it is a
cut.

(4) By (3) and (2) we know that any admissible set is a cut. The converse
follows when we have shown that all cuts are iterated mutations of one
another (see Theorem 5.11 and Remark 5.13).
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We need the following purely combinatorial result, which will be proven in Sub-
sections 5.3 to 5.5.

Theorem 5.11. All cuts of Q are successive mutations of one another.

Step 3. Finally, we need the following result which will also be shown in Subsec-
tions 5.3 to 5.5.

Proposition 5.12. (1) Λμ+
x (C) is an n-APR tilt of ΛC .

(2) Λμ+
x (C) is n-representation-finite if and only if ΛC is as well.

Now Theorem 5.6 follows:

Proof of Theorem 5.6. By Theorem 5.7, there is a cut C0 such that ΛC0
is n-repre-

sentation-finite. By Proposition 5.12 this property is preserved under mutation of
cuts, and by Theorem 5.11 all cuts are iterated mutations of C0. �
Remark 5.13. Theorem 5.11, together with Remark 5.10(2) and (3), shows that in
the setup of Definition 5.1 the set of cuts (as defined in Definition 5.3) and the set
of admissible sets (as defined in Definition 4.19) coincide.

5.2. Mutation of cuts. In this subsection we show that the mutations μ+
x (C) (or

μ−
x (C)) as in Definition 5.8 for a cut C are again cuts.

Proposition 5.14. In the setup of Definition 5.8(2) we have the following:

(1) Any arrow in Q ending at x belongs to C, and any arrow in Q starting at
x does not belong to C.

(2) μ+
x (C) is again a cut.

(3) x is a sink of the quiver Qμ+
x (C).

For the proof we need the following observation, which tells us that any sequence
of arrows of pairwise different type may be completed to an (n+ 1)-cycle.

Lemma 5.15. Let x ∈ Z
n+1 and let σ : {1, . . . , �} {1, . . . , n+1} be an injective

map. Assume that x +
∑i

j=1 fσ(j) belongs to Q0 for any 0 ≤ i ≤ �. Then σ

extends to an element σ ∈ Sn+1 such that x +
∑i

j=1 fσ(j) belongs to Q0 for any
0 ≤ i ≤ n+ 1.

Proof. The statement makes sense only for s ≥ 2. We set I := {0, . . . , s− 1}. For
any i ∈ {1, . . . , n+ 1} we have xi + 1 ∈ I or xi − 1 ∈ I.

We can assume � < n + 1. We will define σ(� + 1) ∈ {1, . . . , n + 1} such that

x +
∑�+1

j=1 fσ(j) belongs to Q0. Without loss of generality, we assume that i0 and

i1( 
= i0, i0 + 1) belong to Imσ but that none of i0 + 1, i0 + 2, . . . , i1 − 1 belong to

Imσ. Since x and x+
∑�

j=1 fσ(j) belong to Q0, we have

xi0+1 ∈ I, xi0+1 + 1 ∈ I, xi1 ∈ I, and xi1 − 1 ∈ I.

If i1 = i0 + 2, then σ(�+ 1) := i0 + 1 satisfies the desired condition. In the rest of
the proof, we assume i1 
= i0 + 2. We divide it into three cases.

(i) If xi0+2 + 1 ∈ I, then σ(�+ 1) := i0 + 1 satisfies the desired condition.
(ii) If xi1−1 − 1 ∈ I, then σ(�+ 1) := i1 − 1 satisfies the desired condition.
(iii) By (i) and (ii), we can assume xi0+2 − 1 ∈ I, xi1−1 + 1 ∈ I and i1 
= i0 + 3.

Then there exists i0 + 2 ≤ i2 < i1 − 1 satisfying

xi2 − 1 ∈ I and xi2+1 + 1 ∈ I.

Then σ(�+ 1) := i2 satisfies the desired condition. �



6602 OSAMU IYAMA AND STEFFEN OPPERMANN

Proof of Proposition 5.14. (1) The former condition is clear since x is a source
of QC . Assume that an arrow a starting at x belongs to C. By Lemma 5.15
we know that a is part of an (n+ 1)-cycle c. Then c contains at least two
arrows which belong to C, a contradiction.

(2) Let c be an (n + 1)-cycle. We only have to check that exactly one of the
(n+1) arrows in c is contained in μ+

x (C). This is clear if x is not contained
in c. Assume that x is contained in c, and let a and b be the arrows in
c ending and starting in x, respectively. Since C is a cut, a is the unique
arrow in c contained in C. Thus b is the unique arrow in c contained in
μ+
x (C).

(3) Clear from (1). �

5.3. n-cluster tilting in derived categories. This and the following two sub-
sections are devoted to the proofs of Theorem 5.11 and Proposition 5.12.

We consider a covering Q̃ of Q and then introduce the notion of slices (see Defi-

nition 5.20) in Q̃ and their mutation. Then we construct a correspondence between
cuts and νn-orbits of slices (Theorem 5.24) and show that slices are transitive un-
der mutations (Theorem 5.27). These results are the key steps of the proofs of
Theorem 5.11 and Proposition 5.12.

We give the conceptual part of the proof in this subsection and postpone the
proof of the combinatorial parts (Theorems 5.24 and 5.27) to Subsection 5.4.

We recall the subcategory

U = add{νinΛ | i ∈ Z}

of DΛ (see Subsection 2.2).

Definition 5.16. We denote by Q̃ = Q̃(n,s) the quiver with

Q̃0 = {(�1, �2, . . . , �n+1 : i) ∈ Z
n+1
≥0 × Z |

n+1∑
j=1

�j = s− 1}

(we separate the last entry of the vector to emphasize its special role) and

Q̃1 = {ãx,i : x
i
x+ gi | 1 ≤ i ≤ n+ 1, x, x+ gi ∈ Q̃0},

where gi denotes the vector

gi =

⎧⎨⎩ (0, . . . , 0,
i
−1,

i+1
1, 0, . . . , 0:0), 1 ≤ i ≤ n,

(
1
1, 0, . . . , 0,

n+1
−1:1), i = n+ 1.

We consider the category obtained from the quiver Q̃ by factoring out the relations

[x
i

x+ gi
j

x+ gi + gj ] = [x
j

x+ gj
i

x+ gi + gj ]

if x, x+ gi, x+ gj , x+ gi + gj ∈ Q̃0,

[x
i

x+ gi
j

x+ gi + gj ] = 0

if x, x+ gi, x+ gi + gj ∈ Q̃0 and x+ gj 
∈ Q̃0.
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Example 5.17. The quiver Q̃(1,4) is the following:

30:1 30:2 30:3 30:4 30:5

21:1 21:2 21:3 21:4

12:0 12:1 12:2 12:3 12:4

03:0 03:1 03:2 03:3

1

1

1

1

1

1

1

1

1 1 1 1

2 2 2 2

2

2

2

2

2

2

2

2

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

The quiver Q̃(2,4) is the following:

300:0

210:0

120:0

030:0

201:0

111:0

021:0

102:0

012:0

003:0

300:1

210:1

120:1

030:1

201:1

111:1

021:1

102:1

012:1

003:1

300:2

210:2

120:2

030:2

201:2

111:2

021:2

102:2

012:2

003:2

1

1

1

1

1

12

2

2

2

2

2

3

3

3

3

3

3

1

1

1

1

1

12

2

2

2

2

2

3

3

3

3

3

3

1

1

1

1

1

12

2

2

2

2

2

Remark 5.18. By abuse of notation we also denote the automorphism of Q̃ induced

by sending (�1, �2, . . . , �n+1 : i) to (�1, �2, . . . , �n+1 : i−1) by νn, and the map Q̃ Q
induced by sending (�1, �2, . . . , �n+1 : i) to (�1, �2, . . . , �n+1) by π.

The following result is shown in [Iya1, Theorem 6.10] (see Theorem 2.5).

Theorem 5.19. (1) The n-cluster tilting subcategory U of DΛ is presented by

the quiver Q̃ with relations as in Definition 5.16.
(2) In this presentation the indecomposable projective Λ-modules correspond to

the vertices (�1, . . . , �n+1 : 0), and the indecomposable injective Λ-modules
correspond to the vertices (�1, . . . , �n+1 :�1).

(3) The n-cluster tilting Λ-module is given by the direct sum of all objects cor-
responding to the vertices between projective and injective Λ-modules.

We now carry over the concept of slices to the quiver setup.

Definition 5.20. A slice of Q̃ is a full subquiver S of Q̃ satisfying the following
conditions.

(1) Any νn-orbit in Q̃ contains precisely one vertex which belongs to S.

(2) S is convex, i.e. for any path p in Q̃ connecting two vertices in S, all vertices
appearing in p belong to S.

Remark 5.21. Definition 5.20 is just a “quiver version” of Definition 4.8. In partic-

ular it is clear that slices in Q̃ and slices in U are in natural bijection.

Next we carry over Construction 4.20 to this combinatorial situation, that is, we

produce from any slice in Q̃ a cut CS .
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Proposition 5.22. (1) For any slice S in Q̃, we have a cut

CS := Q1 \ π(S1)

in Q.
(2) π gives an isomorphism S QCS

of quivers.

Proof. (1) Let

x1

a1

x2

a2 · · ·
an

xn+1

an+1

x1

be an (n + 1)-cycle in Q. We only have to show that there exists precisely one
i ∈ {1, . . . , n+ 1} such that the arrow ai does not lie in π(S1).

Let Q̃′ be the full subquiver of Q̃ defined by Q̃′
0 := π−1({x1, . . . , xn+1}). Then

Q̃′ is isomorphic to the A∞
∞ quiver

· · · y−1 y0 y1 y2 · · · ,

where π(yi+(n+1)j) = {xi} holds for any i ∈ {1, . . . , n + 1}, j ∈ Z. Since S is a
slice, there exists k ∈ Z such that the n + 1 vertices yk, yk+1, . . . , yk+n belong to
S0 and any other yi does not belong to S0. Take k′ ∈ {1, . . . , n + 1} such that
k − k′ ∈ (n+ 1)Z. Then the n arrows

xk′
ak′

xk′+1

ak′+1

· · ·
an

xn+1

an+1

x1

a1 · · ·
ak′−2

xk′−1

belong to π(S1), and xk′−1

ak′−1

xk′ does not belong to π(S1).
(2) By Definition 5.20(1), π : S0 (QCS

)0 = Q0 is bijective and π : S1 (QCS
)1

is injective. Since (QCS
)1 = π(S1) by our construction, we have that π is an iso-

morphism. �

Example 5.23. Two slices and the corresponding cuts for n = 1 and s = 4 are
shown as follows:

slices

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

corresponding cuts

Some slices and corresponding cuts for n = 2 and s = 3 can be found in Table 5.

Now we state the first main assertion of this subsection, which will be proven in
the next subsection.

Theorem 5.24. The correspondence S CS in Proposition 5.22 gives a bijection

between νn-orbits of slices in Q̃ and cuts in Q.

Let us introduce the following notion.
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Table 5. Some slices and corresponding cuts for n = 2 and s = 3

slices:

...

...

...

...

...

...

...

...

...

...

corresponding cuts:

Definition 5.25. Let S be a slice in Q̃.

(1) Let x be a source of S. Define a full subquiver μ+
x (S) of Q̃ by removing x

from S and adding ν−n x.
(2) Dually, for each sink x of S, we define μ−

x (S).

We call the process of replacing a slice S by μ+
x (S) or μ

−
x (S) the mutation of slices.

Proposition 5.26. In the setup of Definition 5.25(1) we have the following.

(1) Any successor of x in Q̃ belongs to S, and any predecessor of x in Q̃ does
not belong to S.

(2) Any successor of ν−n x in Q̃ does not belong to μ+
x (S), and any predecessor

of ν−n x in Q̃ belongs to μ+
x (S).

(3) μ+
x (S) is again a slice, and ν−n x is a sink of μ+

x (S).
(4) We have Cμ+

x (S) = μ+
π(x)(CS).
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Proof. (1) Let CS be the cut given in Proposition 5.22. Then x is a source of QCS
.

By Propositions 5.14(1) and 5.22(2), we have the assertion.
(2) The former assertion follows from the former assertion in (1) and the defini-

tion of a slice.
Take a predecessor y of ν−n x and an integer i such that νiny ∈ S0. If i > 0, then

we have i = 1 since there exists a path from νiny to x passing through νny. This is
a contradiction to the latter assertion of (1), since νny is a predecessor of x. Thus
we have i ≤ 0. Since there exists a path from x to νiny passing through y, we have
y ∈ S0.

(3) By (2), ν−n x is a sink of μ+
x (S). We only have to show that μ+

x (S) is convex.

We only have to consider paths p in Q̃ starting at a vertex in μ+
x (S) and ending at

ν−n x. Since any predecessor of ν−n x in Q̃ belongs to S by (2) and since S is convex,
any vertex appearing in p belongs to μ+

x (S).
(4) This is clear from (1) and (2). �

The following is the second main statement in this section, which will be proven
in the next subsection.

Theorem 5.27. The slices in Q̃ are transitive under successive mutation.

Remark 5.28. Note that one can prove Theorem 5.27 by using the categorical
argument in Lemma 4.14. But we will give a purely combinatorial proof in the
next subsection since it has its own interest.

Clearly Theorem 5.11 is an immediate consequence of Proposition 5.26(4) and
Theorems 5.24 and 5.27 above.

We now work towards a proof of Proposition 5.12. We identify a slice S in Q̃
with the direct sum of all objects in DΛ corresponding to vertices in S.

Lemma 5.29. (1) EndDΛ
(S) ∼= ΛCS

.
(2) Let x be a source of S. If S is a tilting complex in DΛ, then μ+

x (S) is an
n-APR tilting ΛCS

-module.

Proof. (1) π gives an isomorphism S CS . It is easily checked that the relations

for U correspond to those for Λ̂.
(2) This is clear from the definition. �

Proposition 5.30. For any slice S in Q̃, the corresponding object S ∈ DΛ is an
iterated n-APR tilting complex.

Proof. This is clear for the slice consisting of the vertices of the form (�1, . . . , �n+1 :0)
by Theorem 5.19(2). We have the assertion by Theorem 5.27 and Lemma 5.29(2).

�

Proof of Proposition 5.12. By Theorem 5.24 there exists a slice S in Q̃ such that
C = CS . Take a source y of S such that x = π(y). By Lemma 5.29(1) we can
identify ΛC with S. By Lemma 5.29(2) and Proposition 5.30, μ+

x (S) is an n-APR
tilting ΛC -module with

EndDΛ
(μ+

x (S))
∼= ΛC

μ
+
x (S)

= Λμ+
x (C).

Thus the assertion follows. �
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5.4. Proof of Theorems 5.24 and 5.27. In this subsection we give the proofs
of Theorems 5.24 and 5.27 which were postponed in Subsection 5.3. We postpone
further (to Subsection 5.5) the proof of Proposition 5.33, a technical classification
result needed in the proofs here.

We need the following preparation.

Definition 5.31. (1) We denote by walk(Q) the set of walks in Q (that is,
finite sequences of arrows and inverse arrows such that consecutive entries
involve matching vertices). For a walk p we denote by s(p) and e(p) the
starting and ending vertex of p, respectively. A walk p is called cyclic if
s(p) = e(p).

(2) We define an equivalence relation ∼ on walk(Q) as the transitive closure of
the following relations:
(a) aa−1 ∼ es(a) and a−1a ∼ ee(a) for any a ∈ Q1.
(b) If p ∼ q, then rpr′ ∼ rqr′ for any r and r′.

Similarly we define walk(Q̃) and the equivalence relation ∼ on walk(Q̃).

For a walk p = a1 · · · an we denote by p−1 := a−1
n · · · a−1

1 the inverse walk.
Any map ω : Q1 A with an abelian group A is naturally extended to a map

ω : walk(Q) A by putting ω(a−1) := −ω(a) for any a ∈ Q1 and

ω(p) :=
�∑

i=1

ω(bi)

for any walk p = b1 · · · b�. We define ω : walk(Q̃) A by ω(p) := ω(π(p)). Clearly

these maps ω : walk(Q) A and ω : walk(Q̃) A are invariant under the equiv-
alence relation ∼.

In particular, we define maps

φi : walk(Q) Z and Φ = (φ1, . . . , φn+1) : walk(Q) Z
n+1

by setting φi(a) := δij for any arrow a of type j in Q.

Definition 5.32. We denote by G the set of cyclic walks satisfying

p ∼ (q1c
±1
1 q−1

1 )(q2c
±1
2 q−1

2 ) · · · (q�c±1
� q−1

� )

for some walks qi and (n+ 1)-cycles ci.

We will prove Theorems 5.24 and 5.27 by using the following result, which will
be shown in the next subsection.

Proposition 5.33. Any cyclic walk on Q belongs to G.

Using this, we will now prove the following proposition, telling us that on QC

the value Φ(p) depends only on s(p) and e(p).

Proposition 5.34. Let C be a cut of Q.

(1) For any cyclic walk p on QC , we have Φ(p) = 0.
(2) For any walks p and q on QC satisfying s(p) = s(q) and e(p) = e(q), we

have Φ(p) = Φ(q).

To prove Proposition 5.34, we define a map

φC : walk(Q) Z
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by setting

φC(a) :=

{
1 if a /∈ C,
−n if a ∈ C

for any arrow a ∈ Q1.

Lemma 5.35. For any cyclic walk p on Q, we have φC(p) = 0.

Proof. Any (n + 1)-cycle C satisfies φC(c) = 0. By Proposition 5.33 we have the
assertion. �

We define a map

�C : walk(Q) Z

by putting

�C(a) :=

{
0 if a /∈ C,
1 if a ∈ C

for any arrow a ∈ Q1.
The following result is clear.

Lemma 5.36. For any p ∈ walk(Q) we have
∑n+1

i=1 φi(p) = φC(p) + (n+ 1)�C(p).

Now we are ready to prove Proposition 5.34.

Proof of Proposition 5.34. (1) Since p is a cyclic walk, we have
∑n+1

i=1 φi(p)fi = 0
(with fi as in Definition 5.1). This implies φ1(p) = · · · = φn+1(p).

Since p is a cyclic walk on QC , we have

n+1∑
i=1

φi(p) = φC(p) + (n+ 1)�C(p) = 0 + (n+ 1) · 0 = 0

by Lemmas 5.35 and 5.36. Thus we have φ1(p) = · · · = φn+1(p) = 0.
(2) We have Φ(p)− Φ(q) = Φ(pq−1) = 0 by (1). �

The fact that Q̃ Q is a Galois covering is reflected by the following lemma on
the lifting of walks.

Lemma 5.37. Fix x0 ∈ Q0 and x̃0 ∈ Q̃0 such that π(x̃0) = x0. For any walk p

in Q with s(p) = x0, there exists a unique walk p̃ in Q̃ such that s(p̃) = x̃0 and
π(p̃) = p.

Proof. For any x ∈ Q0 and y ∈ Q̃0 such that π(y) = x, the morphism π : Q̃ Q
gives a bijection from the set of arrows starting (respectively, ending) at y to the
set of arrows starting (respectively, ending) at x. Thus the assertion follows. �

We have the following key observation.

Lemma 5.38. Fix x0 ∈ Q0 and x̃0 ∈ Q̃0 such that π(x̃0) = x0. For any walks p
and q in QC satisfying s(p) = s(q) = x0 and e(p) = e(q), then p̃ and q̃ as given in
Lemma 5.37 satisfy e(p̃) = e(q̃).

Proof. By our definition of Φ, we have that φi(p̃) counts the number of arrows of
type i appearing in p̃. Since we have φi(p̃) = φi(q̃) by Proposition 5.34, we have
that the number of arrows of type i appearing in p̃ is equal to that in q̃. Since
s(p̃) = s(q̃), we have e(p̃) = e(q̃). �
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Now Theorem 5.24 follows from the following result, which allows us to construct
slices from cuts.

Proposition 5.39. Let C be a cut in Q. Fix a vertex x0 ∈ Q0 and x̃0 ∈ π−1(x0).

(1) There exists a unique morphism ι : QC Q̃ of quivers satisfying the fol-
lowing conditions:

• ι(x0) = x̃0,
• the composition π ◦ ι : QC Q is the identity on QC .

(2) ι(QC) is a slice in Q̃.

Proof. (1) To give the desired morphism ι : QC Q̃ of quivers, we only have to give

a map ι : Q0 Q̃0 between the sets of vertices, satisfying the following conditions:

• ι(x0) = x̃0,
• the composition π ◦ ι : QC Q is the identity on Q0,

• for any arrow a : x y in QC , there is an arrow ι(x) ι(y) in Q̃.

We define ι : Q0 Q̃0 as follows. Fix any x ∈ Q0. We take any walk p in QC

from x0 to x. By Lemma 5.37, there exists a unique walk p̃ in Q̃ such that s(p̃) = x̃0

and π(p̃) = p. Then we put ι(x) := e(p̃). By Lemma 5.38, ι(x) does not depend on
the choice of the walk p.

We only have to check the third condition above. Fix an arrow a : x y in
QC . Take any walk p in QC from x0 to x. The walk pa : x0 y in QC gives the

corresponding walk p̃a : x̃0 ι(y) in Q̃. Then p̃a has the form p̃ b for an arrow

b : ι(x) ι(y) and a walk p̃ : x̃0 ι(x) in Q̃. Thus the third condition is satisfied.
The uniqueness of ι is clear.

(2) Fix vertices x, y ∈ ι(QC)0 and a path p in Q̃ from x to y. We only have to
show that p is a path in ι(QC).

Since QC is connected, we can take a walk q on ι(QC) from x to y. Then we
have Φ(π(p)) = Φ(π(q)). We have

φC(p) + (n+ 1)�C(p) =

n+1∑
i=1

φi(p) =

n+1∑
i=1

φi(q) = φC(q) + (n+ 1)�C(q) = φC(q)

by Lemma 5.36. Since we have φC(p) = φC(q) by Lemma 5.35, we have �C(p) = 0.
By definition of ι, any arrow appearing in p belongs to ι(QC). �

This completes the proof of Theorem 5.24.
In the remainder of this subsection we give a purely combinatorial proof of

Theorem 5.27.
For a slice S, we denote by S+

0 the subset of Q̃0 consisting of sources in S.

Lemma 5.40. The correspondence S S+
0 is injective.

Proof. We denote by S′
0 the set of vertices x of Q̃ satisfying the following conditions:

• there exists a path in Q̃ from some vertex in S+
0 to x,

• there does not exist a path in Q̃ from any vertex in S+
0 to νnx.

To prove the assertion, we only have to show S0 = S′
0. It is easily seen from the

definition of S′
0 that each νn-orbit in Q̃0 contains at most one vertex in S′

0. Since
S0 is a slice, we only have to show S0 ⊂ S′

0.
For any x ∈ S0, there exists a path in S from some vertex in S+

0 to x since S

is a finite acyclic quiver. Assume that there exists a path p in Q̃ from y ∈ S+
0 to
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νnx. Since there exists a path q in Q̃ from νnx to x, we have a path pq from y to
x. Since S is convex, we have νnx ∈ S0, a contradiction to x ∈ S0. �

For a slice S of Q̃, define the full subquiver Q̃≥0
S by

(Q̃≥0
S )0 :=

⋃
�≥0

ν�nS0.

Clearly we have (Q̃≥0

μ+
x (S)

)0 = (Q̃≥0
S )0 ∪ {ν−n x}.

Lemma 5.41. Let S be a slice in Q̃. Then there exists a numbering S0 = {x1, . . . ,
xN} of vertices of S such that the following conditions are satisfied:

(1) xi+1 is a source in μ+
xi

◦ · · · ◦ μ+
x1
(S) for any 0 ≤ i < N .

(2) We have μ+
xN

◦ · · · ◦ μ+
x1
(S) = ν−n S.

Proof. When we have x1, . . . , xi−1 ∈ S0, then we define xi as a source of the quiver
S \ {x0, . . . , xi−1}. It is easily checked that the desired conditions are satisfied. �

For slices S and T in Q̃, we write S ≤ T if (Q̃≥0
S )0 ⊆ (Q̃≥0

T )0. In this case, we
put

d(S, T ) := #((Q̃≥0
T )0 \ (Q̃≥0

S )0).

Now we are ready to prove Theorem 5.27.
Let S and T be slices. We can assume S ≤ T by Lemma 5.41. We use the

induction on d(S, T ). If d(S, T ) = 0, then we have S = T . Assume d(S, T ) > 0.
As in the proof of Lemma 5.40, one can see that, if S+

0 ⊆ T+
0 , then S = T . Thus

there exists a source x of S such that x /∈ T0. Then we have μ+
x (S) ≤ T and

d(μ+
x (S), T ) = d(S, T ) − 1. By our assumption on induction, μ+

x (S) is obtained
from T by a successive mutation. Thus S is obtained from T by a successive
mutation. �
5.5. Proof of Proposition 5.33. We complete the proof of Theorem 5.6 by filling
the remaining gap, that is, by proving Proposition 5.33.

For a walk p, we denote by |p| the length of p. For x, y ∈ Q0, we denote by
d(x, y) the minimum of the length of walks on Q from x to y.

It is easily checked (similar to the proof of Lemma 5.15) that d(x, y) = d(x′, y′)
whenever x− y = x′ − y′.

Lemma 5.42. Let p be a cyclic walk. Assume that, for any decomposition p =
p1p2p3 of p,

d(s(p2), e(p2)) = min{|p2|, |p3p1|}
holds. Then one of the following conditions holds:

(1) p or p−1 is an (n+ 1)-cycle.
(2) p has the form p = aε11 · · · aε�� b−ε1

1 · · · b−ε�
� with an injective map σ : {1, . . . , �}

{1, . . . , n}, arrows ai and bi of type σ(i) and εi ∈ {±1}.

Proof. (i) Assume that p contains an arrow of type i and an inverse arrow of type
i at the same time. Take any decomposition p = q1aq2b

−1 with arrows a, b of type
i and walks q1 and q2. If |q2| < |q1|, then we have

d(s(q1), e(q1)) = d(e(q2), s(q2)) < min{|q1|, |aq2b−1|},
a contradiction. Similarly, |q1| < |q2| cannot occur. Consequently, we have |q1| =
|q2|. This equality also implies that q1 and q2 do not contain arrows or inverse
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arrows of type i. So φi(p) = 0, and hence φj(p) = 0 for any j. Then it is easy to
see that p satisfies condition (2).

(ii) In the rest of the proof, we assume that p does not satisfy condition (2). By
(i), we have that p does not contain an arrow of type i and an inverse arrow of type
i at the same time. Without loss of generality we may assume φi(p) > 0. Then p
contains exactly φi(p) arrows of type i for each i, and it does not contain inverse
arrows.

Since p is a cyclic walk, we have an equality
∑n+1

i=1 φi(p)fi = 0. This implies
φ := φ1(p) = · · · = φn+1(p). We shall show that φ = 1. Then condition (1) is
satisfied.

Assume that φ > 1 holds.
Assume that |p| is odd, so n + 1 is also odd. We write p = ap1p2 with an

arrow a and |p1| = |p2|. By our assumption, we have d(s(p1), e(p1)) = |p1| =
|p2| = d(s(p2), e(p2)). This implies that less than n+1

2 types of arrows appear in
p1 (respectively, p2). Since φ > 1, either p1 or p2 contains an arrow of the same
type with a. Hence p contains less than n+1

2 + n+1
2 = n + 1 kinds of arrows, a

contradiction.
Assume that |p| is even. We write p = ap1bp2 with arrows a, b and |p1| = |p2|.

By our assumption, we have

d(s(ap1), e(ap1)) = |ap1| = |bp2| = d(s(bp2), e(bp2)).

This implies that at most n+1
2 types of arrows appear in ap1 (respectively, bp2).

Since all kinds of arrows appear in p, we have that ap1 and bp2 contain exactly n+1
2

types of arrows, and there is no common type of arrows in ap1 and bp2. By the
same argument, we have that p1b and p2a contain exactly n+1

2 types of arrows, and
there is no common type of arrows in p1b and p2a.

Since φ > 1, either p1 or p2 contains an arrow of same type with a. Assume
that p1 contains an arrow of the same type with a. Then p1b and p2a contain a
common type of arrows, a contradiction. Similarly, p2 does not contain an arrow
of the same type with a, a contradiction. �

Lemma 5.43. The cyclic walk in Lemma 5.42(2) belongs to G if ε1 = · · · = ε� = 1.

Proof. By Lemma 5.15, a1 · · · a� extends to an (n + 1)-cycle a1 · · · an+1 in Q with
ai an arrow of type σ(i) (σ ∈ Sn+1 extending the original σ). Since

a1 · · · a�b−1
1 · · · b−1

� ∼ (a1 · · · an+1)(b� · · · b1a�+1 · · · an+1)
−1 ∈ G,

we have the assertion. �

Lemma 5.44. Let paεbε
′
q and pcε

′
dεq be cyclic walks on Q, with ε, ε′ ∈ {±1}, such

that a and d are arrows of the same type, and b and c are arrows of the same type.
Then one of them belongs to G if and only if the other does.

Proof. We have the equivalences

pabq ∼ (p(abd−1c−1)p−1)(pcdq) (ε = ε′ = 1),

pab−1q ∼ (pc−1(cab−1d−1)cp−1)(pc−1dq) (ε = 1, ε′ = −1),

and similarly for the remaining cases. The claim now follows from Lemma 5.43. �

Lemma 5.45. Let x ∈ Q0, σ : {1, . . . , �} {1, . . . , n+1} be an injective map and

εi ∈ {±1} for any 1 ≤ i ≤ �. Assume that x +
∑i

j=1 εjfσ(j) and x +
∑�

j=i εjfσ(j)
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belong to Q0 for any 0 ≤ i ≤ �. Then, for any subset I of {1, . . . , �}, we have that
x+

∑
j∈I εjfσ(j) belongs to Q0.

Proof. We only have to show that

0 ≤ xσ(i) − εi < s and 0 ≤ xσ(i)+1 + εi < s

hold for any i ∈ {1, 2, . . . , �}.
If σ(i) − 1 /∈ {σ(1), . . . , σ(i − 1)}, then the σ(i)-th entry of x +

∑i
j=1 εjfσ(j) is

equal to xσ(i) − εi. If σ(i) − 1 /∈ {σ(i + 1), . . . , σ(�)}, then the σ(i)-th entry of

x+
∑�

j=i εjfσ(j) is equal to xσ(i) − εi. In each case we have the former inequality.
The latter inequality can be shown in a similar manner. �

We now look at the following special case of Proposition 5.33.

Lemma 5.46. Any cyclic walk satisfying the condition in Lemma 5.42(2) belongs
to G.

Proof. Let p be the cyclic walk in Lemma 5.42(2), and let x = s(p). It follows from

Lemma 5.45 that for any 
 ∈ S�, Q̃ contains the cyclic walk

p� := (�a
ε�(1)
1 ) · · · (�a

ε�(�)
� )b−ε1

1 · · · b−ε�
�

starting from x, where �ai is an arrow of type σ(
(i)). When 
 is given by 
(i) =
�+ 1− i, the cyclic walk p� is

p� = bε�� · · · bε11 b−ε1
1 · · · b−ε�

� ,

which clearly belongs to G. Using Lemma 5.44 repeatedly, we see that all p� lie in
G, so in particular p = pid ∈ G. �

Now we are ready to prove Proposition 5.33.

Proof of Proposition 5.33. We use the induction on |p|. Assume that p does not
satisfy conditions (1) and (2) in Lemma 5.42. Then we can write p = p1p2p3 with

d(s(p2), e(p2)) < min{|p2|, |p3p1|}.

Take a walk q from s(p2) to e(p2) with |q| = d(s(p2), e(p2)). Then we have

p ∼ (p1qp3)(p
−1
3 (q−1p2)p3),

|p1qp3| = |p1|+ |q|+ |p3| < |p| and |q−1p2| = |q|+ |p2| < |p|. By our assumption of
induction, p1qp3 and q−1p2 belong to G. Thus p also belongs to G. �

5.6. (n + 1)-preprojective algebras. We end this paper by showing that the

algebras Λ̂(n,s) have the following properties:

Theorem 5.47. Λ̂(n,s) is self-injective weakly (n+1)-representation-finite, and we

have a triangle equivalence mod Λ̂(n,s) ≈ Cn+1
Λ(n+1,s−1) .

We remark that this proof relies heavily on a results from [IO] (also see Re-
mark 4.17 in that paper). We need the following observation.

Proposition 5.48. For any cut C of Q(n,s), the (n + 1)-preprojective algebra of

the n-representation-finite algebra Λ
(n,s)
C is Λ̂(n,s).
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Proof. The quiver morphism π : Q̃(n,s) Q(n,s) gives an equivalence U/νn ≈
proj Λ̂(n,s) of categories, which sends Λ

(n,s)
C to Λ̂(n,s). Thus the (n + 1)-pre-

projective algebra of Λ
(n,s)
C is

EndU/νn
(Λ

(n,s)
C )op ∼= Λ̂(n,s). �

Proof of Theorem 5.47. By Proposition 5.48 the algebra Λ̂(n,s) is the (n + 1)-pre-

projective algebra of the n-representation-finite algebra Λ
(n,s)
C for any cut C. Thus,

by [IO, Corollary 3.4], Λ̂(n,s) is self-injective.
Moreover, by [IO, Theorem 1.1], we have

mod Λ̂(n,s) ≈ Cn+1
Γ ,

where Γ is the stable n-Auslander algebra of Λ
(n,s)
C . In particular, for C = C0 we

have that Γ is the stable n-Auslander algebra of Λ(n,s), which is EndΛ(n,s)(M (n,s)) ∼=
Λ(n+1,s−1).

The fact that Λ̂(n,s) is weakly (n + 1)-representation-finite now follows from
the existence of an (n + 1)-cluster tilting object in Cn+1

Λ(n+1,s−1) by work of Amiot
([Ami1, Ami2]; also see [IO, Corollary 4.16]). �
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bras. Invent. Math., 165(3):589–632, 2006. MR2242628 (2007g:16023)

[GLS2] Christof Geiss, Bernard Leclerc, and Jan Schröer. Auslander algebras and initial seeds for
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