Some $4$-point Hurwitz numbers in positive characteristic
HTML articles powered by AMS MathViewer
- by Irene I. Bouw and Brian Osserman
- Trans. Amer. Math. Soc. 363 (2011), 6685-6711
- DOI: https://doi.org/10.1090/S0002-9947-2011-05347-X
- Published electronically: June 15, 2011
- PDF | Request permission
Abstract:
In this paper, we compute the number of covers of curves with given branch behavior in characteristic $p$ for one class of examples of genus $0$, with four branch points and degree $p$. Our techniques involve related computations in the case of three branch points, and allow us to conclude in many cases that for a particular choice of degeneration, all the covers we consider degenerate to separable (admissible) covers. Starting from a good understanding of the complex case, the proof is centered on the theory of stable reduction of Galois covers.References
- G. Boccara, Cycles comme produit de deux permutations de classes données, Discrete Math. 38 (1982), no. 2-3, 129–142 (French). MR 676530, DOI 10.1016/0012-365X(82)90282-5
- Irene I. Bouw, Construction of covers in positive characteristic via degeneration, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3169–3176. MR 2515387, DOI 10.1090/S0002-9939-09-10013-8
- —, Pseudo-elliptic bundles, deformation data, and the reduction of Galois covers, Habilitation thesis.
- Irene I. Bouw, Reduction of the Hurwitz space of metacyclic covers, Duke Math. J. 121 (2004), no. 1, 75–111. MR 2031166, DOI 10.1215/S0012-7094-04-12113-X
- Irene I. Bouw and Stefan Wewers, Reduction of covers and Hurwitz spaces, J. Reine Angew. Math. 574 (2004), 1–49. MR 2099108, DOI 10.1515/crll.2004.071
- Irene I. Bouw and Stefan Wewers, Stable reduction of modular curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 1–22. MR 2058639
- Irene I. Bouw and Stefan Wewers, The local lifting problem for dihedral groups, Duke Math. J. 134 (2006), no. 3, 421–452. MR 2254623, DOI 10.1215/S0012-7094-06-13431-2
- Peter J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), no. 1, 1–22. MR 599634, DOI 10.1112/blms/13.1.1
- Walter Feit, Some consequences of the classification of finite simple groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 175–181. MR 604576
- Philippe Gille and Tamás Szamuely, Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 101, Cambridge University Press, Cambridge, 2006. MR 2266528, DOI 10.1017/CBO9780511607219
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- Richard Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc. 15 (1976), no. 1, 125–128. MR 424912, DOI 10.1017/S0004972700036832
- Fu Liu and Brian Osserman, The irreducibility of certain pure-cycle Hurwitz spaces, Amer. J. Math. 130 (2008), no. 6, 1687–1708. MR 2464030, DOI 10.1353/ajm.0.0031
- Peter Müller, Reducibility behavior of polynomials with varying coefficients, Israel J. Math. 94 (1996), 59–91. MR 1394567, DOI 10.1007/BF02762697
- Jeremy Muskat and Rachel Pries, Alternating group covers of the affine line, preprint.
- Brian Osserman, Rational functions with given ramification in characteristic $p$, Compos. Math. 142 (2006), no. 2, 433–450. MR 2218904, DOI 10.1112/S0010437X05001946
- Brian Osserman, Linear series and the existence of branched covers, Compos. Math. 144 (2008), no. 1, 89–106. MR 2388557, DOI 10.1112/S0010437X0700303X
- Michel Raynaud, Spécialisation des revêtements en caractéristique $p>0$, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 1, 87–126 (French, with English and French summaries). MR 1670532, DOI 10.1016/S0012-9593(99)80010-X
- Björn Selander, Counting three-point $G$-covers with a given special $G$-deformation datum, preprint.
- Jean-Pierre Serre, Sur la topologie des variétés algébriques en caractéristique $p$, Symposium internacional de topología algebraica International symposium on algebraic topology, Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 24–53 (French). MR 0098097
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Stefan Wewers, Construction of Hurwitz spaces, Dissertion, IEM, Essen, 1998.
- Stefan Wewers, Reduction and lifting of special metacyclic covers, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 1, 113–138 (English, with English and French summaries). MR 1987978, DOI 10.1016/S0012-9593(03)00004-1
- Stefan Wewers, Three point covers with bad reduction, J. Amer. Math. Soc. 16 (2003), no. 4, 991–1032. MR 1992833, DOI 10.1090/S0894-0347-03-00435-1
Bibliographic Information
- Irene I. Bouw
- Affiliation: Department of Mathematics, University of Ulm, 89069 Ulm, Germany
- Email: irene.bouw@uni-ulm.de
- Brian Osserman
- Affiliation: Department of Mathematics, University of California at Davis, Davis, California 95616
- MR Author ID: 722512
- Email: osserman@math.ucdavis.edu
- Received by editor(s): June 9, 2009
- Received by editor(s) in revised form: January 18, 2010, and March 11, 2010
- Published electronically: June 15, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 363 (2011), 6685-6711
- MSC (2010): Primary 11G20, 14D15, 14H37
- DOI: https://doi.org/10.1090/S0002-9947-2011-05347-X
- MathSciNet review: 2833573