Symmetric topological complexity as the first obstruction in Goodwillie’s Euclidean embedding tower for real projective spaces
HTML articles powered by AMS MathViewer
- by Jesús González
- Trans. Amer. Math. Soc. 363 (2011), 6713-6741
- DOI: https://doi.org/10.1090/S0002-9947-2011-05449-8
- Published electronically: June 3, 2011
- PDF | Request permission
Abstract:
As a first goal, it is explained why the Goodwillie-Weiss calculus of embeddings offers new information about the Euclidean embedding dimension of $\mathrm {P}^m$ only for $m\leq 15$. Concrete scenarios are described in these low-dimensional cases, pinpointing where to look for potential—but critical—high-order obstructions in the corresponding Taylor towers. For $m\geq 16$, the relation $\mathrm {TC}^S(\mathrm {P}^m)\geq n$ is translated into the triviality of a certain cohomotopy Euler class which, in turn, becomes the only Taylor obstruction to producing an embedding $\mathrm {P}^m\subset \mathbb {R}^n$. A speculative bordism-type form of this primary obstruction is proposed as an analogue of Davis’ $BP$-approach to the immersion problem of $\mathrm {P}^m$. A form of the Euler class viewpoint is applied to show that $\mathrm {TC}^S(\mathrm {P}^3)=5$, as well as to suggest a few higher-dimensional projective spaces for which the method could produce new information. As a second goal, the paper extends Farber’s work on the motion planning problem in order to develop the notion of a symmetric motion planner for a mechanical system ${\mathcal S}$. Following Farber’s lead, this concept is connected to $\mathrm {TC}^S(C({\mathcal S}))$, the symmetric topological complexity of the state space of ${\mathcal S}$. The paper ends by sketching the construction of a concrete $5$-local-rules symmetric motion planner for $\mathrm {P}^3$.References
- Luis Astey, Geometric dimension of bundles over real projective spaces, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 122, 139–155. MR 576333, DOI 10.1093/qmath/31.2.139
- Luis Astey, A cobordism obstruction to embedding manifolds, Illinois J. Math. 31 (1987), no. 2, 344–350. MR 882119
- David R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans. Amer. Math. Soc. 213 (1975), 263–303. MR 474330, DOI 10.1090/S0002-9947-1975-0474330-1
- M. C. Crabb, $\textbf {Z}/2$-homotopy theory, London Mathematical Society Lecture Note Series, vol. 44, Cambridge University Press, Cambridge-New York, 1980. MR 591680
- Donald M. Davis, A strong nonimmersion theorem for real projective spaces, Ann. of Math. (2) 120 (1984), no. 3, 517–528. MR 769162, DOI 10.2307/1971086
- D. M. Davis, “Table of immersions and embeddings of real projective spaces”, available from http://www.lehigh.edu/∼ dmd1/immtable
- Leonard Evens, The cohomology of groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144017
- Michael Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221. MR 1957228, DOI 10.1007/s00454-002-0760-9
- Michael Farber, Instabilities of robot motion, Topology Appl. 140 (2004), no. 2-3, 245–266. MR 2074919, DOI 10.1016/j.topol.2003.07.011
- Michael Farber and Mark Grant, Symmetric motion planning, Topology and robotics, Contemp. Math., vol. 438, Amer. Math. Soc., Providence, RI, 2007, pp. 85–104. MR 2359031, DOI 10.1090/conm/438/08447
- Michael Farber, Serge Tabachnikov, and Sergey Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870. MR 1988783, DOI 10.1155/S1073792803210035
- S. Feder, The reduced symmetric product of projective spaces and the generalized Whitney theorem, Illinois J. Math. 16 (1972), 323–329. MR 296966
- Yves Félix and Daniel Tanré, The cohomology algebra of unordered configuration spaces, J. London Math. Soc. (2) 72 (2005), no. 2, 525–544. MR 2156668, DOI 10.1112/S0024610705006794
- S. Gitler and D. Handel, The projective Stiefel manifolds. I, Topology 7 (1968), 39–46. MR 220307, DOI 10.1016/0040-9383(86)90013-3
- Jesús González and Peter Landweber, Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9 (2009), no. 1, 473–494. MR 2491582, DOI 10.2140/agt.2009.9.473
- J. González and P. S. Landweber, “The integral cohomology of configuration spaces of pairs of points in real projective spaces”, in preparation.
- Thomas G. Goodwillie, John R. Klein, and Michael S. Weiss, Spaces of smooth embeddings, disjunction and surgery, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 221–284. MR 1818775
- Thomas G. Goodwillie, John R. Klein, and Michael S. Weiss, A Haefliger style description of the embedding calculus tower, Topology 42 (2003), no. 3, 509–524. MR 1953238, DOI 10.1016/S0040-9383(01)00027-1
- Thomas G. Goodwillie and Michael Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999), 103–118. MR 1694808, DOI 10.2140/gt.1999.3.103
- André Haefliger, Points multiples d’une application et produit cyclique réduit, Amer. J. Math. 83 (1961), 57–70 (French). MR 120655, DOI 10.2307/2372720
- David Handel, An embedding theorem for real projective spaces, Topology 7 (1968), 125–130. MR 227998, DOI 10.1016/0040-9383(68)90020-7
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Brian A. Munson, Embeddings in the $3/4$ range, Topology 44 (2005), no. 6, 1133–1157. MR 2168572, DOI 10.1016/j.top.2005.04.007
- Elmer Rees, Embeddings of real projective spaces, Topology 10 (1971), 309–312. MR 288778, DOI 10.1016/0040-9383(71)90024-3
- A. S. Schwarz, “The genus of a fiber space”, Amer. Math. Soc. Transl. Ser. 2 55 (1966) 49–140.
- Stephan Stolz, The level of real projective spaces, Comment. Math. Helv. 64 (1989), no. 4, 661–674. MR 1023002, DOI 10.1007/BF02564700
- G. Vranceanu and T. Ganea, Topological embeddings of lens spaces, Proc. Cambridge Philos. Soc. 57 (1961), 688–690. MR 124908
- Michael Weiss, Embeddings from the point of view of immersion theory. I, Geom. Topol. 3 (1999), 67–101. MR 1694812, DOI 10.2140/gt.1999.3.67
- George W. Whitehead, On mappings into group-like spaces, Comment. Math. Helv. 28 (1954), 320–328. MR 65927, DOI 10.1007/BF02566938
- Tsutomu Yasui, Note on the enumeration of embeddings of real projective spaces, Hiroshima Math. J. 3 (1973), 409–418. MR 339220
- Tsutomu Yasui, Note on the enumeration of embeddings of real projective spaces. II, Hiroshima Math. J. 6 (1976), no. 2, 221–225. MR 436171
- Yo Ging-tzung, Cohomology $\textrm {mod}\ p$ of deleted cyclic product of a manifold, Sci. Sinica 12 (1963), 1779–1794. MR 182003
Bibliographic Information
- Jesús González
- Affiliation: Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Apartado Postal 14-740 México City, C.P. 07000, México
- Email: jesus@math.cinvestav.mx
- Received by editor(s): February 10, 2010
- Received by editor(s) in revised form: August 11, 2010
- Published electronically: June 3, 2011
- Additional Notes: The author was partially supported by CONACYT Research Grant 102783.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 363 (2011), 6713-6741
- MSC (2010): Primary 57R40, 55M30, 55R80, 70E60
- DOI: https://doi.org/10.1090/S0002-9947-2011-05449-8
- MathSciNet review: 2833574