On the slice-ribbon conjecture for Montesinos knots
HTML articles powered by AMS MathViewer
- by Ana G. Lecuona
- Trans. Amer. Math. Soc. 364 (2012), 233-285
- DOI: https://doi.org/10.1090/S0002-9947-2011-05385-7
- Published electronically: July 20, 2011
- PDF | Request permission
Abstract:
We establish the slice-ribbon conjecture for a family $\mathscr {P}$ of Montesinos knots by means of Donaldson’s theorem on the intersection forms of definite $4$-manifolds. The $4$-manifolds that we consider are obtained by plumbing disc bundles over $S^2$ according to a star-shaped negative-weighted graph with $3$ legs such that: i) the central vertex has weight less than or equal to $- 3$; ii) $- \mbox {total weight} - 3 \# \mbox {vertices} <-1$. The Seifert spaces which bound these $4$-dimensional plumbing manifolds are the double covers of $S^3$ branched along the Montesinos knots in the family $\mathscr {P}$.References
- M. Bhupal, A.I. Stipsicz, Weighted homogeneous singularities and rational homology disk smoothings, preprint (2009), arXiv:0902.2277.
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397–428. MR 910015, DOI 10.4310/jdg/1214441485
- Andrew J. Casson and John L. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), no. 1, 23–36. MR 634760, DOI 10.2140/pjm.1981.96.23
- Henry Clay Fickle, Knots, $\textbf {Z}$-homology $3$-spheres and contractible $4$-manifolds, Houston J. Math. 10 (1984), no. 4, 467–493. MR 774711
- R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 168–176. MR 0140100
- Ronald Fintushel and Ronald J. Stern, An exotic free involution on $S^{4}$, Ann. of Math. (2) 113 (1981), no. 2, 357–365. MR 607896, DOI 10.2307/2006987
- J. Greene, S. Jabuka, The slice-ribbon conjecture for $3$-stranded pretzel knots, preprint (2007), arXiv:0706.3398v2
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Paik Kee Kim and Jeffrey L. Tollefson, Splitting the PL involutions of nonprime $3$-manifolds, Michigan Math. J. 27 (1980), no. 3, 259–274. MR 584691
- Louis H. Kauffman, On knots, Annals of Mathematics Studies, vol. 115, Princeton University Press, Princeton, NJ, 1987. MR 907872
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- A.G. Lecuona, Ph.D. thesis, Università di Pisa, in preparation.
- Paolo Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429–472. MR 2302495, DOI 10.2140/gt.2007.11.429
- Paolo Lisca, Sums of lens spaces bounding rational balls, Algebr. Geom. Topol. 7 (2007), 2141–2164. MR 2366190, DOI 10.2140/agt.2007.7.2141
- José María Montesinos, $4$-manifolds, $3$-fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978), 453–467. MR 511423, DOI 10.1090/S0002-9947-1978-0511423-7
- José M. Montesinos, Seifert manifolds that are ramified two-sheeted cyclic coverings, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32 (Spanish). MR 341467
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Peter Orlik and Frank Raymond, On $3$-manifolds with local $\textrm {SO}(2)$ action, Quart. J. Math. Oxford Ser. (2) 20 (1969), 143–160. MR 266214, DOI 10.1093/qmath/20.1.143
- Oswald Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211–248 (German). MR 367276, DOI 10.1007/BF01351850
- Rabe von Randow, Zur Topologie von dreidimensionalen Baummannigfaltigkeiten, Bonn. Math. Schr. 14 (1962), v+131 (German). MR 155304
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- H. Seifert, Topologie Dreidimensionaler Gefaserter Räume, Acta Math. 60 (1933), no. 1, 147–238 (German). MR 1555366, DOI 10.1007/BF02398271
- L. Siebenman, Exercises sur les noeuds rationnels, mimeographed notes, Orsay, (1975).
- R. Stern, Some more Brieskorn spheres which bound contractible manifolds, Acta. Math. 60 (1933), 147–238.
- L. Williams, Obstructing sliceness in a family of Montesinos knots, (2008), arXiv:0809.1247.
Bibliographic Information
- Ana G. Lecuona
- Affiliation: Dipartimento di Matematica, Università di Pisa, 56127 Pisa, Italy
- Address at time of publication: UMPA-ENS Lyon, 46 allée d’Italie, 69364 Lyon, France
- Email: lecuona@mail.dm.unipi.it, ana.garcia_lecuona@ens-lyon.fr
- Received by editor(s): November 15, 2009
- Received by editor(s) in revised form: May 26, 2010
- Published electronically: July 20, 2011
- Additional Notes: The author wss supported by Spanish GAAR MTM2008-00272/MTM and Proyecto Santander Complutense PR34/07-15813
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 233-285
- MSC (2010): Primary Prmary, 57M25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05385-7
- MathSciNet review: 2833583