## Extreme value theory for non-uniformly expanding dynamical systems

HTML articles powered by AMS MathViewer

- by Mark Holland, Matthew Nicol and Andrei Török PDF
- Trans. Amer. Math. Soc.
**364**(2012), 661-688 Request permission

## Abstract:

We establish extreme value statistics for functions with multiple maxima and some degree of regularity on certain non-uniformly expanding dynamical systems. We also establish extreme value statistics for time series of observations on discrete and continuous suspensions of certain non-uniformly expanding dynamical systems via a general lifting theorem. The main result is that a broad class of observations on these systems exhibit the same extreme value statistics as i.i.d. processes with the same distribution function.## References

- Viviane Baladi,
*Positive transfer operators and decay of correlations*, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR**1793194**, DOI 10.1142/9789812813633 - R. J. Bhansali and M. P. Holland,
*Frequency analysis of chaotic intermittency maps with slowly decaying correlations*, Statist. Sinica**17**(2007), no. 1, 15–41. MR**2352502** - H. Bruin, B. Saussol, S. Troubetzkoy, and S. Vaienti,
*Return time statistics via inducing*, Ergodic Theory Dynam. Systems**23**(2003), no. 4, 991–1013. MR**1997964**, DOI 10.1017/S0143385703000026 - P. Collet,
*Statistics of closest return for some non-uniformly hyperbolic systems*, Ergodic Theory Dynam. Systems**21**(2001), no. 2, 401–420. MR**1827111**, DOI 10.1017/S0143385701001201 - K. Díaz-Ordaz, M. P. Holland, and S. Luzzatto,
*Statistical properties of one-dimensional maps with critical points and singularities*, Stoch. Dyn.**6**(2006), no. 4, 423–458. MR**2285510**, DOI 10.1142/S0219493706001852 - Dmitry Dolgopyat,
*Limit theorems for partially hyperbolic systems*, Trans. Amer. Math. Soc.**356**(2004), no. 4, 1637–1689. MR**2034323**, DOI 10.1090/S0002-9947-03-03335-X - G. K. Eagleson,
*Some simple conditions for limit theorems to be mixing*, Teor. Verojatnost. i Primenen.**21**(1976), no. 3, 653–660 (Russian). MR**0428388** - Ana Cristina Moreira Freitas and Jorge Milhazes Freitas,
*Extreme values for Benedicks-Carleson quadratic maps*, Ergodic Theory Dynam. Systems**28**(2008), no. 4, 1117–1133. MR**2437222**, DOI 10.1017/S0143385707000624 - Ana Cristina Moreira Freitas and Jorge Milhazes Freitas,
*On the link between dependence and independence in extreme value theory for dynamical systems*, Statist. Probab. Lett.**78**(2008), no. 9, 1088–1093. MR**2422964**, DOI 10.1016/j.spl.2007.11.002 - Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd,
*Hitting time statistics and extreme value theory*, Probab. Theory Related Fields**147**(2010), no. 3-4, 675–710. MR**2639719**, DOI 10.1007/s00440-009-0221-y - Janos Galambos,
*The asymptotic theory of extreme order statistics*, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, New York-Chichester-Brisbane, 1978. MR**489334** - Chinmaya Gupta,
*Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems*, Ergodic Theory Dynam. Systems**30**(2010), no. 3, 757–771. MR**2643710**, DOI 10.1017/S0143385709000406 - C. Gupta, M. P. Holland and M. Nicol. E.V.T. for Lozi maps, Lorenz-like maps and dispersing billiards. To appear in
*Ergodic Theory Dynam. Systems*. - N. Haydn, Y. Lacroix, and S. Vaienti,
*Hitting and return times in ergodic dynamical systems*, Ann. Probab.**33**(2005), no. 5, 2043–2050. MR**2165587**, DOI 10.1214/009117905000000242 - Nicolai Haydn and Sandro Vaienti,
*The compound Poisson distribution and return times in dynamical systems*, Probab. Theory Related Fields**144**(2009), no. 3-4, 517–542. MR**2496441**, DOI 10.1007/s00440-008-0153-y - Masaki Hirata,
*Poisson law for Axiom A diffeomorphisms*, Ergodic Theory Dynam. Systems**13**(1993), no. 3, 533–556. MR**1245828**, DOI 10.1017/S0143385700007513 - Masaki Hirata, Benoît Saussol, and Sandro Vaienti,
*Statistics of return times: a general framework and new applications*, Comm. Math. Phys.**206**(1999), no. 1, 33–55. MR**1736991**, DOI 10.1007/s002200050697 - M. R. Leadbetter, Georg Lindgren, and Holger Rootzén,
*Extremes and related properties of random sequences and processes*, Springer Series in Statistics, Springer-Verlag, New York-Berlin, 1983. MR**691492** - R. M. Loynes,
*Extreme values in uniformly mixing stationary stochastic processes*, Ann. Math. Statist.**36**(1965), 993–999. MR**176530**, DOI 10.1214/aoms/1177700071 - Ian Melbourne and Andrei Török,
*Statistical limit theorems for suspension flows*, Israel J. Math.**144**(2004), 191–209. MR**2121540**, DOI 10.1007/BF02916712 - B. Pitskel′,
*Poisson limit law for Markov chains*, Ergodic Theory Dynam. Systems**11**(1991), no. 3, 501–513. MR**1125886**, DOI 10.1017/S0143385700006301 - A. Rényi,
*On mixing sequences of sets*, Acta Math. Acad. Sci. Hungar.**9**(1958), 215–228. MR**98161**, DOI 10.1007/BF02023873 - Alfréd Rényi,
*Contributions to the theory of independent random variables*, Acta Math. Acad. Sci. Hungar.**1**(1950), 99–108 (Russian, with English summary). MR**39938**, DOI 10.1007/BF02022555 - Sidney I. Resnick,
*Extreme values, regular variation, and point processes*, Applied Probability. A Series of the Applied Probability Trust, vol. 4, Springer-Verlag, New York, 1987. MR**900810**, DOI 10.1007/978-0-387-75953-1 - Walter Rudin,
*Real and complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR**924157** - Maximilian Thaler,
*Transformations on $[0,\,1]$ with infinite invariant measures*, Israel J. Math.**46**(1983), no. 1-2, 67–96. MR**727023**, DOI 10.1007/BF02760623 - Lai-Sang Young,
*Statistical properties of dynamical systems with some hyperbolicity*, Ann. of Math. (2)**147**(1998), no. 3, 585–650. MR**1637655**, DOI 10.2307/120960 - Lai-Sang Young,
*Recurrence times and rates of mixing*, Israel J. Math.**110**(1999), 153–188. MR**1750438**, DOI 10.1007/BF02808180

## Additional Information

**Mark Holland**- Affiliation: School of Engineering, Computer Science and Mathematics, University of Exeter, North Park Road, Exeter, EX4 4QF, England
- Email: m.p.holland@exeter.ac.uk
**Matthew Nicol**- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- MR Author ID: 350236
- Email: nicol@math.uh.edu
**Andrei Török**- Affiliation: Department of Mathematics, University of Houston, Houston, Texas 77204-3008
- MR Author ID: 249702
- Email: torok@math.uh.edu
- Received by editor(s): February 12, 2009
- Received by editor(s) in revised form: December 1, 2009
- Published electronically: October 4, 2011
- Additional Notes: The research of the second and third authors was supported in part by the National Science Foundation grants DMS-0607345 and DMS-0600927. We thank Henk Bruin for useful discussions, especially in connection with Lemma 3.10. We also wish to thank an anonymous referee for helpful suggestions and in particular the proof of Lemma 4.16.
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**364**(2012), 661-688 - MSC (2010): Primary 37D99; Secondary 60F99
- DOI: https://doi.org/10.1090/S0002-9947-2011-05271-2
- MathSciNet review: 2846347