Integral points and Vojta’s conjecture on rational surfaces
HTML articles powered by AMS MathViewer
- by Yu Yasufuku
- Trans. Amer. Math. Soc. 364 (2012), 767-784
- DOI: https://doi.org/10.1090/S0002-9947-2011-05320-1
- Published electronically: September 15, 2011
- PDF | Request permission
Abstract:
Using an inequality by Corvaja and Zannier about gcd’s of polynomials in $S$-units, we verify Vojta’s conjecture (with respect to integral points) for rational surfaces and triangular divisors. This amounts to a gcd inequality for integral points on $\mathbb {G}_m^2$. The argument in the proof is generalized to give conditions under which Vojta’s conjecture on a variety implies Vojta’s conjecture on its blowup.References
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- P. Corvaja and U. Zannier, On integral points on surfaces, Ann. of Math. (2) 160 (2004), no. 2, 705–726. MR 2123936, DOI 10.4007/annals.2004.160.705
- Pietro Corvaja and Umberto Zannier, A lower bound for the height of a rational function at $S$-unit points, Monatsh. Math. 144 (2005), no. 3, 203–224. MR 2130274, DOI 10.1007/s00605-004-0273-0
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI 10.1007/BF01388432
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- David McKinnon, Vojta’s main conjecture for blowup surfaces, Proc. Amer. Math. Soc. 131 (2003), no. 1, 1–12. MR 1929015, DOI 10.1090/S0002-9939-02-06784-9
- Charles F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian J. Math. 23 (1981), no. 1-3, 1–15. MR 722894
- Hans Peter Schlickewei, Linearformen mit algebraischen koeffizienten, Manuscripta Math. 18 (1976), no. 2, 147–185. MR 401665, DOI 10.1007/BF01184304
- Wolfgang M. Schmidt, Linear forms with algebraic coefficients. I, J. Number Theory 3 (1971), 253–277. MR 308061, DOI 10.1016/0022-314X(71)90001-1
- Joseph H. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monatsh. Math. 145 (2005), no. 4, 333–350. MR 2162351, DOI 10.1007/s00605-005-0299-y
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Yu Yasufuku, Vojta’s conjecture on blowups of $\Bbb P^n$, greatest common divisors, and the $abc$ conjecture, Monatsh. Math. 163 (2011), no. 2, 237–247. MR 2794199, DOI 10.1007/s00605-010-0242-8
- —, Vojta’s conjecutre and blowups, Ph.D. Dissertation at Brown University.
Bibliographic Information
- Yu Yasufuku
- Affiliation: Department of Mathematics, CUNY-Graduate Center, 365 Fifth Avenue, New York, New York 10016
- Address at time of publication: Department of Mathematics, Nihon University, 1-8-14 Kanda-Surugadai, Tokyo 101-8308, Japan
- MR Author ID: 681581
- Email: yasufuku@post.harvard.edu, yasufuku@math.cst.nihon-u.ac.jp
- Received by editor(s): June 19, 2009
- Received by editor(s) in revised form: November 26, 2009, January 26, 2010, and February 13, 2010
- Published electronically: September 15, 2011
- Additional Notes: This work was supported in part by NSF VIGRE grant number DMS-9977372
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 767-784
- MSC (2010): Primary 11J97, 14G40; Secondary 14J26
- DOI: https://doi.org/10.1090/S0002-9947-2011-05320-1
- MathSciNet review: 2846352