Transcendence of generating functions whose coefficients are multiplicative
HTML articles powered by AMS MathViewer
- by Jason P. Bell, Nils Bruin and Michael Coons
- Trans. Amer. Math. Soc. 364 (2012), 933-959
- DOI: https://doi.org/10.1090/S0002-9947-2011-05479-6
- Published electronically: August 31, 2011
- PDF | Request permission
Abstract:
In this paper, we give a new proof and an extension of the following result of Bézivin. Let $f:\mathbb {N}\to K$ be a multiplicative function taking values in a field $K$ of characteristic $0$, and write $F(z)=\sum _{n\geq 1} f(n)z^n\in K[[z]]$ for its generating series. If $F(z)$ is algebraic, then either there is a natural number $k$ and a periodic multiplicative function $\chi (n)$ such that $f(n)=n^k \chi (n)$ for all $n$ or $f(n)$ is eventually zero. In particular, the generating series of a multiplicative function taking values in a field of characteristic zero is either transcendental or rational. For $K=\mathbb {C}$, we also prove that if the generating series of a multiplicative function is $D$–finite, then it must either be transcendental or rational.References
- Boris Adamczewski and Yann Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547–565. MR 2299740, DOI 10.4007/annals.2007.165.547
- Shmuel Agmon, On the singularities of Taylor series with reciprocal coefficients, Pacific J. Math. 2 (1952), 431–453. MR 51299
- Jean-Paul Allouche, Note on the transcendence of a generating function, New trends in probability and statistics, Vol. 4 (Palanga, 1996) VSP, Utrecht, 1997, pp. 461–465. MR 1653629
- J.-P. Allouche, Transcendence of formal power series with rational coefficients, Theoret. Comput. Sci. 218 (1999), no. 1, 143–160. WORDS (Rouen, 1997). MR 1687784, DOI 10.1016/S0304-3975(98)00256-4
- William D. Banks, Florian Luca, and Igor E. Shparlinski, Irrationality of power series for various number theoretic functions, Manuscripta Math. 117 (2005), no. 2, 183–197. MR 2150480, DOI 10.1007/s00229-005-0564-3
- Jason P. Bell, A proof of a partition conjecture of Bateman and Erdős, J. Number Theory 87 (2001), no. 1, 144–153. MR 1816040, DOI 10.1006/jnth.2000.2589
- Jean-Paul Bézivin, Une généralisation du théorème de Skolem-Mahler-Lech, Quart. J. Math. Oxford Ser. (2) 40 (1989), no. 158, 133–138 (French). MR 997644, DOI 10.1093/qmath/40.2.133
- Jean-Paul Bezivin, Fonctions multiplicatives et équations différentielles, Bull. Soc. Math. France 123 (1995), no. 3, 329–349 (French, with English and French summaries). MR 1373738
- Peter Borwein and Michael Coons, Transcendence of power series for some number theoretic functions, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1303–1305. MR 2465652, DOI 10.1090/S0002-9939-08-09737-2
- Fritz Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z. 9 (1921), no. 1-2, 1–13 (German). MR 1544447, DOI 10.1007/BF01378331
- G. Christol, T. Kamae, M. Mendès France, and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), no. 4, 401–419 (French, with English summary). MR 614317
- Michael Coons, (Non)automaticity of number theoretic functions, J. Théor. Nombres Bordeaux 22 (2010), no. 2, 339–352 (English, with English and French summaries). MR 2769065
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- Philippe Flajolet, Stefan Gerhold, and Bruno Salvy, On the non-holonomic character of logarithms, powers, and the $n$th prime function, Electron. J. Combin. 11 (2004/06), no. 2, Article 2, 16. MR 2195433, DOI 10.37236/1894
- Rod Gow and Rachel Quinlan, Galois theory and linear algebra, Linear Algebra Appl. 430 (2009), no. 7, 1778–1789. MR 2494663, DOI 10.1016/j.laa.2008.06.030
- Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original. MR 600654
- K.-H. Indlekofer and I. Kátai, Multiplicative functions with small increments. I, Acta Math. Hungar. 55 (1990), no. 1-2, 97–101. MR 1077063, DOI 10.1007/BF01951391
- Kiran S. Kedlaya, Finite automata and algebraic extensions of function fields, J. Théor. Nombres Bordeaux 18 (2006), no. 2, 379–420 (English, with English and French summaries). MR 2289431
- Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, 2nd ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1916029, DOI 10.1007/978-0-8176-8134-0
- Dieter Leitmann and Dieter Wolke, Periodische und multiplikative zahlentheoretische Funktionen, Monatsh. Math. 81 (1976), no. 4, 279–289. MR 429794, DOI 10.1007/BF01387755
- George Pólya and Gabor Szegő, Problems and theorems in analysis. II, Classics in Mathematics, Springer-Verlag, Berlin, 1998. Theory of functions, zeros, polynomials, determinants, number theory, geometry; Translated from the German by C. E. Billigheimer; Reprint of the 1976 English translation. MR 1492448, DOI 10.1007/978-3-642-61905-2_{7}
- Jean-Pierre Ramis, Théorèmes d’indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984), no. 296, viii+95 (French, with English summary). MR 733946, DOI 10.1090/memo/0296
- Alain M. Robert, A course in $p$-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000. MR 1760253, DOI 10.1007/978-1-4757-3254-2
- A. Sárközy, On multiplicative arithmetic functions satisfying a linear recursion, Studia Sci. Math. Hungar. 13 (1978), no. 1-2, 79–104 (1981). MR 630381
- R. P. Stanley, Differentiably finite power series, European J. Combin. 1 (1980), no. 2, 175–188. MR 587530, DOI 10.1016/S0195-6698(80)80051-5
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Soroosh Yazdani, Multiplicative functions and $k$-automatic sequences, J. Théor. Nombres Bordeaux 13 (2001), no. 2, 651–658 (English, with English and French summaries). MR 1879677
Bibliographic Information
- Jason P. Bell
- Affiliation: Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- MR Author ID: 632303
- Email: jpb@sfu.ca
- Nils Bruin
- Affiliation: Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
- MR Author ID: 653028
- Email: nbruin@sfu.ca
- Michael Coons
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- MR Author ID: 857151
- Email: mcoons@math.uwaterloo.ca
- Received by editor(s): March 15, 2010
- Received by editor(s) in revised form: August 27, 2010
- Published electronically: August 31, 2011
- Additional Notes: The research of the first and second authors was supported in part by a grant from NSERC of Canada
The research of the third author was supported by a Fields-Ontario Fellowship. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 933-959
- MSC (2010): Primary 11N64, 11J91; Secondary 11B85
- DOI: https://doi.org/10.1090/S0002-9947-2011-05479-6
- MathSciNet review: 2846359