Quantum double of Hopf monads and categorical centers
HTML articles powered by AMS MathViewer
- by Alain Bruguières and Alexis Virelizier
- Trans. Amer. Math. Soc. 364 (2012), 1225-1279
- DOI: https://doi.org/10.1090/S0002-9947-2011-05342-0
- Published electronically: October 17, 2011
- PDF | Request permission
Abstract:
The center $\mathcal {Z}(\mathcal {C})$ of an autonomous category $\mathcal {C}$ is monadic over $\mathcal {C}$ (if certain coends exist in $\mathcal {C}$). The notion of a Hopf monad naturally arises if one tries to reconstruct the structure of $\mathcal {Z}(\mathcal {C})$ in terms of its monad $Z$: we show that $Z$ is a quasitriangular Hopf monad on $\mathcal {C}$ and $\mathcal {Z}(\mathcal {C})$ is isomorphic to the braided category $Z-\mathcal {C}$ of $Z$-modules. More generally, let $T$ be a Hopf monad on an autonomous category $\mathcal {C}$. We construct a Hopf monad $Z_T$ on $\mathcal {C}$, the centralizer of $T$, and a canonical distributive law $\Omega \colon TZ_T \to Z_T T$. By Beck’s theory, this has two consequences. On one hand, $D_T=Z_T \circ _\Omega T$ is a quasitriangular Hopf monad on $\mathcal {C}$, called the double of $T$, and $\mathcal {Z}(T-\mathcal {C}) \simeq D_T-\mathcal {C}$ as braided categories. As an illustration, we define the double $D(A)$ of a Hopf algebra $A$ in a braided autonomous category in such a way that the center of the category of $A$-modules is the braided category of $D(A)$-modules (generalizing the Drinfeld double). On the other hand, the canonical distributive law $\Omega$ also lifts $Z_T$ to a Hopf monad $\tilde {Z}_T^\Omega$ on $T-\mathcal {C}$, and $\tilde {Z}_T^\Omega (\mathbb {1}, T_0)$ is the coend of $T-\mathcal {C}$. For $T=Z$, this gives an explicit description of the Hopf algebra structure of the coend of $\mathcal {Z}(\mathcal {C})$ in terms of the structural morphisms of $\mathcal {C}$. Such a description is useful in quantum topology, especially when $\mathcal {C}$ is a spherical fusion category, as $\mathcal {Z}(\mathcal {C})$ is then modular.References
- Jon Beck, Distributive laws, Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67) Springer, Berlin, 1969, pp. 119–140. MR 0241502
- Yu. N. Bespalov, Crossed modules and quantum groups in braided categories, Appl. Categ. Structures 5 (1997), no. 2, 155–204. MR 1456522, DOI 10.1023/A:1008674524341
- Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994. Categories and structures. MR 1313497
- Alain Bruguières and Alexis Virelizier, Hopf diagrams and quantum invariants, Algebr. Geom. Topol. 5 (2005), 1677–1710. MR 2186115, DOI 10.2140/agt.2005.5.1677
- Alain Bruguières and Alexis Virelizier, Hopf monads, Adv. Math. 215 (2007), no. 2, 679–733. MR 2355605, DOI 10.1016/j.aim.2007.04.011
- Alain Bruguières and Alexis Virelizier, Categorical centers and Reshetikhin-Turaev invariants, Acta Math. Vietnam. 33 (2008), no. 3, 255–277. MR 2501845
- —, On the center of fusion categories, in preparation.
- John W. Barrett and Bruce W. Westbury, Invariants of piecewise-linear $3$-manifolds, Trans. Amer. Math. Soc. 348 (1996), no. 10, 3997–4022. MR 1357878, DOI 10.1090/S0002-9947-96-01660-1
- V. G. Drinfel′d, Almost cocommutative Hopf algebras, Algebra i Analiz 1 (1989), no. 2, 30–46 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 2, 321–342. MR 1025154
- Brian Day and Ross Street, Centres of monoidal categories of functors, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 187–202. MR 2342829, DOI 10.1090/conm/431/08273
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Volodymyr V. Lyubashenko, Invariants of $3$-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172 (1995), no. 3, 467–516. MR 1354257
- Michael Müger, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. MR 1966525, DOI 10.1016/S0022-4049(02)00248-7
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Shahn Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995. MR 1381692, DOI 10.1017/CBO9780511613104
- I. Moerdijk, Monads on tensor categories, J. Pure Appl. Algebra 168 (2002), no. 2-3, 189–208. Category theory 1999 (Coimbra). MR 1887157, DOI 10.1016/S0022-4049(01)00096-2
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Ross Street, The formal theory of monads, J. Pure Appl. Algebra 2 (1972), no. 2, 149–168. MR 299653, DOI 10.1016/0022-4049(72)90019-9
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673
Bibliographic Information
- Alain Bruguières
- Affiliation: Département de Mathématiques, Université Montpellier II, Place Eugène Bataillan, 34095 Montpellier cedex 05, France
- Email: bruguier@math.univ-montp2.fr
- Alexis Virelizier
- Affiliation: Département de Mathématiques, Université Montpellier II, Place Eugène Bataillan, 34095 Montpellier cedex 05, France
- Email: virelizi@math.univ-montp2.fr
- Received by editor(s): June 5, 2009
- Received by editor(s) in revised form: March 4, 2010
- Published electronically: October 17, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1225-1279
- MSC (2010): Primary 16W30, 18C20, 18D10
- DOI: https://doi.org/10.1090/S0002-9947-2011-05342-0
- MathSciNet review: 2869176