Existence of vertical ends of mean curvature $1/2$ in $\mathbb {H}^2 \times \mathbb {R}$
HTML articles powered by AMS MathViewer
- by Maria Fernanda Elbert, Barbara Nelli and Ricardo Sa Earp
- Trans. Amer. Math. Soc. 364 (2012), 1179-1191
- DOI: https://doi.org/10.1090/S0002-9947-2011-05361-4
- Published electronically: November 7, 2011
- PDF | Request permission
Abstract:
We prove the existence of graphs over exterior domains of $\mathbb {H}^2\times \{0\},$ of constant mean curvature $H=\frac {1}{2}$ in $\mathbb {H}^2\times \mathbb {R}$ and weak growth equal to the embedded rotational examples.References
- P. Castillon: Sur les sous-variétés à courbure moyenne constante dans l’espace hyperbolique, thèse de Doctorat de Mathématiques, Université Joseph Fourier (1997).
- D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1998).
- David Hoffman and Hermann Karcher, Complete embedded minimal surfaces of finite total curvature, Geometry, V, Encyclopaedia Math. Sci., vol. 90, Springer, Berlin, 1997, pp. 5–93. MR 1490038, DOI 10.1007/978-3-662-03484-2_{2}
- Barbara Nelli and Ricardo Sa Earp, A halfspace theorem for mean curvature $H=\frac 12$ surfaces in $\Bbb H^2\times \Bbb R$, J. Math. Anal. Appl. 365 (2010), no. 1, 167–170. MR 2585087, DOI 10.1016/j.jmaa.2009.10.031
- Barbara Nelli, Ricardo Sa Earp, Walcy Santos, and Eric Toubiana, Uniqueness of $H$-surfaces in $\Bbb H^2\times \Bbb R,\ |H|\le 1/2$, with boundary one or two parallel horizontal circles, Ann. Global Anal. Geom. 33 (2008), no. 4, 307–321. MR 2395188, DOI 10.1007/s10455-007-9087-3
- Harold Rosenberg, Some recent developments in the theory of properly embedded minimal surfaces in $\textbf {R}^3$, Astérisque 206 (1992), Exp. No. 759, 5, 463–535 (English, with French summary). Séminaire Bourbaki, Vol. 1991/92. MR 1206077
- Richard M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791–809 (1984). MR 730928
- Ricardo Sa Earp, Parabolic and hyperbolic screw motion surfaces in $\Bbb H^2\times \Bbb R$, J. Aust. Math. Soc. 85 (2008), no. 1, 113–143. MR 2460869, DOI 10.1017/S1446788708000013
- Ricardo Sa Earp and Eric Toubiana, Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math. 4 (2000), no. 3, 669–693. MR 1796699, DOI 10.4310/AJM.2000.v4.n3.a9
- Ricardo Sa Earp and Eric Toubiana, Screw motion surfaces in $\Bbb H^2\times \Bbb R$ and $\Bbb S^2\times \Bbb R$, Illinois J. Math. 49 (2005), no. 4, 1323–1362. MR 2210365
- R. Sa Earp, E. Toubiana: Some Applications of Maximum Principle to Hypersurfaces in Euclidean and Hyperbolic Space, New Approaches in Nonlinear Analysis, Themistocles M. Rassias Editor, Hardonic Press (1999) 183-202.
- R. Sa Earp, E. Toubiana: Minimal graphs in $\mathbb {H}^n\times \mathbb {R}$ and $\mathbb {R}^{n+1}$, Ann. de l’Inst. Fourier 60 (2010) 2373-2402.
- R. Sa Earp, E. Toubiana: Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini (2009).
- Leon Simon, Equations of mean curvature type in $2$ independent variables, Pacific J. Math. 69 (1977), no. 1, 245–268. MR 454854
- Joel Spruck, Interior gradient estimates and existence theorems for constant mean curvature graphs in $M^n\times \mathbf R$, Pure Appl. Math. Q. 3 (2007), no. 3, Special Issue: In honor of Leon Simon., 785–800. MR 2351645, DOI 10.4310/PAMQ.2007.v3.n3.a6
Bibliographic Information
- Maria Fernanda Elbert
- Affiliation: Departamento de Métodos Matemáticos, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP: 21945-970 Rio de Janeiro-RJ, Brazil
- Email: fernanda@im.ufrj.br
- Barbara Nelli
- Affiliation: Dipartimento di Matematica, Universitá di L’Aquila, 67100 L’Aquila, Italia
- Email: nelli@univaq.it
- Ricardo Sa Earp
- Affiliation: Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, 22453-900 Rio de Janeiro - RJ, Brazil
- Email: earp@mat.puc-rio.br
- Received by editor(s): April 8, 2008
- Received by editor(s) in revised form: February 21, 2010
- Published electronically: November 7, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1179-1191
- MSC (2010): Primary 53C42, 35J25
- DOI: https://doi.org/10.1090/S0002-9947-2011-05361-4
- MathSciNet review: 2869173