Mickelsson algebras and representations of Yangians
HTML articles powered by AMS MathViewer
- by Sergey Khoroshkin and Maxim Nazarov
- Trans. Amer. Math. Soc. 364 (2012), 1293-1367
- DOI: https://doi.org/10.1090/S0002-9947-2011-05367-5
- Published electronically: October 12, 2011
- PDF | Request permission
Abstract:
Let $\operatorname {Y}(\mathfrak {gl}_n)$ be the Yangian of the general linear Lie algebra $\mathfrak {gl}_n$. We denote by $\operatorname {Y}(\mathfrak {sp}_n)$ and $\operatorname {Y}(\mathfrak {so}_n)$ the twisted Yangians corresponding to the symplectic and orthogonal subalgebras in the Lie algebra $\mathfrak {gl}_n$. These twisted Yangians are one-sided coideal subalgebras in the Hopf algebra $\operatorname {Y}(\mathfrak {gl}_n)$. We provide realizations of irreducible modules of the algebras $\operatorname {Y}(\mathfrak {sp}_n)$ and $\operatorname {Y}(\mathfrak {so}_n)$ as certain quotients of tensor products of symmetic and exterior powers of the vector space $\mathbb {C}^n$. For the Yangian $\operatorname {Y} (\mathfrak {gl}_n)$ such realizations have been known, but we give new proofs of these results. For the twisted Yangian $\operatorname {Y}(\mathfrak {sp}_n)$, we realize all irreducible finite-dimensional modules. For the twisted Yangian $\operatorname {Y}(\mathfrak {so}_n)$, we realize all those irreducible finite-dimensional modules, where the action of the Lie algebra $\mathfrak {so}_n$ integrates to an action of the special orthogonal Lie group $\mathrm {SO}_n$. Our results are based on the theory of reductive dual pairs due to Howe, and on the representation theory of Mickelsson algebras.References
- Tatsuya Akasaka and Masaki Kashiwara, Finite-dimensional representations of quantum affine algebras, Publ. Res. Inst. Math. Sci. 33 (1997), no. 5, 839–867. MR 1607008, DOI 10.2977/prims/1195145020
- Tomoyuki Arakawa and Takeshi Suzuki, Duality between $\mathfrak {s}\mathfrak {l}_n(\textbf {C})$ and the degenerate affine Hecke algebra, J. Algebra 209 (1998), no. 1, 288–304. MR 1652134, DOI 10.1006/jabr.1998.7530
- R. Asherova, Y. Smirnov and V. Tolstoy, A description of certain class of projection operators for complex semisimple Lie algebras, Math. Notes 26 (1980), 499–504.
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464, DOI 10.1090/memo/0918
- Vyjayanthi Chari, Braid group actions and tensor products, Int. Math. Res. Not. 7 (2002), 357–382. MR 1883181, DOI 10.1155/S107379280210612X
- Vyjayanthi Chari and Andrew Pressley, Fundamental representations of Yangians and singularities of $R$-matrices, J. Reine Angew. Math. 417 (1991), 87–128. MR 1103907
- I. V. Cherednik, Factorizing particles on a half line, and root systems, Teoret. Mat. Fiz. 61 (1984), no. 1, 35–44 (Russian, with English summary). MR 774205
- I. V. Cherednik, A new interpretation of Gel′fand-Tzetlin bases, Duke Math. J. 54 (1987), no. 2, 563–577. MR 899405, DOI 10.1215/S0012-7094-87-05423-8
- V. G. Drinfel′d, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69–70 (Russian). MR 831053
- V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
- P. Etingof and A. Varchenko, Dynamical Weyl groups and applications, Adv. Math. 167 (2002), no. 1, 74–127. MR 1901247, DOI 10.1006/aima.2001.2034
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
- S. M. Khoroshkin, An extremal projector and a dynamical twist, Teoret. Mat. Fiz. 139 (2004), no. 1, 158–176 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 139 (2004), no. 1, 582–597. MR 2076916, DOI 10.1023/B:TAMP.0000022749.42512.fd
- Sergey Khoroshkin and Maxim Nazarov, Yangians and Mickelsson algebras. I, Transform. Groups 11 (2006), no. 4, 625–658. MR 2278142, DOI 10.1007/s00031-005-1125-2
- Sergey Khoroshkin and Maxim Nazarov, Yangians and Mickelsson algebras. II, Mosc. Math. J. 6 (2006), no. 3, 477–504, 587 (English, with English and Russian summaries). MR 2274862, DOI 10.17323/1609-4514-2006-6-3-477-504
- Sergey Khoroshkin and Maxim Nazarov, Twisted Yangians and Mickelsson algebras. I, Selecta Math. (N.S.) 13 (2007), no. 1, 69–136. MR 2330588, DOI 10.1007/s00029-007-0036-6
- M. Nazarov and S. Khoroshkin, Twisted Yangians and Mickelsson algebras. II, Algebra i Analiz 21 (2009), no. 1, 153–228 (Russian); English transl., St. Petersburg Math. J. 21 (2010), no. 1, 111–161. MR 2553055, DOI 10.1090/S1061-0022-09-01088-7
- Sergey Khoroshkin, Maxim Nazarov, and Ernest Vinberg, A generalized Harish-Chandra isomorphism, Adv. Math. 226 (2011), no. 2, 1168–1180. MR 2737780, DOI 10.1016/j.aim.2010.08.001
- S. Khoroshkin and O. Ogievetsky, Mickelsson algebras and Zhelobenko operators, J. Algebra 319 (2008), no. 5, 2113–2165. MR 2394693, DOI 10.1016/j.jalgebra.2007.04.020
- P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equations and representation theory. I, Lett. Math. Phys. 5 (1981), no. 5, 393–403. MR 649704, DOI 10.1007/BF02285311
- J. Lepowsky and G. W. McCollum, On the determination of irreducible modules by restriction to a subalgebra, Trans. Amer. Math. Soc. 176 (1973), 45–57. MR 323846, DOI 10.1090/S0002-9947-1973-0323846-5
- Jouko Mickelsson, Step algebras of semi-simple subalgebras of Lie algebras, Rep. Mathematical Phys. 4 (1973), 307–318. MR 342057, DOI 10.1016/0034-4877(73)90006-2
- A. I. Molev, Skew representations of twisted Yangians, Selecta Math. (N.S.) 12 (2006), no. 1, 1–38. MR 2244262, DOI 10.1007/s00029-006-0020-6
- Alexander Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, American Mathematical Society, Providence, RI, 2007. MR 2355506, DOI 10.1090/surv/143
- Alexander Molev and Grigori Olshanski, Centralizer construction for twisted Yangians, Selecta Math. (N.S.) 6 (2000), no. 3, 269–317. MR 1817615, DOI 10.1007/PL00001390
- A. I. Molev, V. N. Tolstoy, and R. B. Zhang, On irreducibility of tensor products of evaluation modules for the quantum affine algebra, J. Phys. A 37 (2004), no. 6, 2385–2399. MR 2045932, DOI 10.1088/0305-4470/37/6/028
- Maxim Nazarov, Representations of twisted Yangians associated with skew Young diagrams, Selecta Math. (N.S.) 10 (2004), no. 1, 71–129. MR 2061224, DOI 10.1007/s00029-004-0350-1
- Maxim Nazarov and Vitaly Tarasov, On irreducibility of tensor products of Yangian modules, Internat. Math. Res. Notices 3 (1998), 125–150. MR 1606387, DOI 10.1155/S1073792898000129
- Maxim Nazarov and Vitaly Tarasov, On irreducibility of tensor products of Yangian modules associated with skew Young diagrams, Duke Math. J. 112 (2002), no. 2, 343–378. MR 1894364, DOI 10.1215/S0012-9074-02-11225-3
- G. I. Ol′shanskiĭ, Extension of the algebra $U({\mathfrak {g}})$ for infinite-dimensional classical Lie algebras ${\mathfrak {g}},$ and the Yangians $Y({\mathfrak {g}}{\mathfrak {l}}(m))$, Dokl. Akad. Nauk SSSR 297 (1987), no. 5, 1050–1054 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 569–573. MR 936073
- G. I. Ol′shanskiĭ, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 104–119. MR 1183482, DOI 10.1007/BFb0101183
- E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988), no. 10, 2375–2389. MR 953215
- V. O. Tarasov, The structure of quantum $L$-operators for the $R$-matrix of the $XXZ$-model, Teoret. Mat. Fiz. 61 (1984), no. 2, 163–173 (Russian, with English summary). MR 778541
- V. O. Tarasov, Irreducible monodromy matrices for an $R$-matrix of the $XXZ$ model, and lattice local quantum Hamiltonians, Teoret. Mat. Fiz. 63 (1985), no. 2, 175–196 (Russian, with English summary). MR 800062
- V. Tarasov and A. Varchenko, Difference equations compatible with trigonometric KZ differential equations, Internat. Math. Res. Notices 15 (2000), 801–829. MR 1780748, DOI 10.1155/S1073792800000441
- V. Tarasov and A. Varchenko, Duality for Knizhnik-Zamolodchikov and dynamical equations, Acta Appl. Math. 73 (2002), no. 1-2, 141–154. The 2000 Twente Conference on Lie Groups (Enschede). MR 1926498, DOI 10.1023/A:1019787006990
- J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96–116 (French). MR 206117, DOI 10.1016/0021-8693(66)90053-6
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- D. P. Zhelobenko, Extremal cocycles on Weyl groups, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 11–21, 95 (Russian). MR 911771
- D. P. Zhelobenko, Extremal projectors and generalized Mickelsson algebras on reductive Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 4, 758–773, 895 (Russian); English transl., Math. USSR-Izv. 33 (1989), no. 1, 85–100. MR 966983, DOI 10.1070/IM1989v033n01ABEH000815
Bibliographic Information
- Sergey Khoroshkin
- Affiliation: Institute for Theoretical and Experimental Physics, Moscow 117259, Russia – and – Department of Mathematics, Higher School of Economics, Moscow 117312, Russia
- Email: khor@itep.ru
- Maxim Nazarov
- Affiliation: Department of Mathematics, University of York, York YO10 5DD, England
- Email: mln1@york.ac.uk
- Received by editor(s): November 27, 2009
- Received by editor(s) in revised form: April 7, 2010
- Published electronically: October 12, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1293-1367
- MSC (2010): Primary 17B35, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-2011-05367-5
- MathSciNet review: 2869178