Finite Weyl groupoids of rank three
HTML articles powered by AMS MathViewer
- by M. Cuntz and I. Heckenberger
- Trans. Amer. Math. Soc. 364 (2012), 1369-1393
- DOI: https://doi.org/10.1090/S0002-9947-2011-05368-7
- Published electronically: September 2, 2011
- PDF | Request permission
Abstract:
We continue our study of Cartan schemes and their Weyl group- oids and obtain a complete list of all connected simply connected Cartan schemes of rank three for which the real roots form a finite irreducible root system. We achieve this result by providing an algorithm which determines all the root systems and eventually terminates: Up to equivalence there are exactly 55 such Cartan schemes, and the number of corresponding real roots varies between $6$ and $37$. We identify those Weyl groupoids which appear in the classification of Nichols algebras of diagonal type.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- M. Cuntz and I. Heckenberger, Reflection groupoids of rank two and cluster algebras of type ${A}$, Preprint arXiv:0911.3051v1 (2009), 18 pp.
- Michael Cuntz and István Heckenberger, Weyl groupoids of rank two and continued fractions, Algebra Number Theory 3 (2009), no. 3, 317–340. MR 2525553, DOI 10.2140/ant.2009.3.317
- M. Cuntz and I. Heckenberger, Weyl groupoids with at most three objects, J. Pure Appl. Algebra 213 (2009), no. 6, 1112–1128. MR 2498801, DOI 10.1016/j.jpaa.2008.11.009
- Branko Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Math. Contemp. 2 (2009), no. 1, 1–25. MR 2485643, DOI 10.26493/1855-3974.88.e12
- István Heckenberger, Classification of arithmetic root systems of rank 3, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, pp. 227–252. MR 2500361
- I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), no. 1, 175–188. MR 2207786, DOI 10.1007/s00222-005-0474-8
- I. Heckenberger, Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11 (2008), no. 2, 115–132. MR 2379892, DOI 10.1007/s10468-007-9060-7
- I. Heckenberger and H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto’s theorem, Math. Z. 259 (2008), 255–276.
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8–96. MR 486011, DOI 10.1016/0001-8708(77)90017-2
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- E. Melchior, Über Vielseite der projektiven Ebene, Deutsche Math. 5 (1941), 461–475 (German). MR 4476
- Tammo tom Dieck, Topologie, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 1991 (German). MR 1150244
Bibliographic Information
- M. Cuntz
- Affiliation: Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
- Email: cuntz@mathematik.uni-kl.de
- I. Heckenberger
- Affiliation: Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Hans- Meerwein-Straße, D-35032 Marburg, Germany
- MR Author ID: 622688
- Email: heckenberger@mathematik.uni-marburg.de
- Received by editor(s): December 4, 2009
- Received by editor(s) in revised form: March 22, 2010, March 25, 2010, and April 7, 2010
- Published electronically: September 2, 2011
- Additional Notes: The second author was supported by the German Research Foundation (DFG) via a Heisenberg fellowship
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 1369-1393
- MSC (2010): Primary 20F55, 16T30, 52C30
- DOI: https://doi.org/10.1090/S0002-9947-2011-05368-7
- MathSciNet review: 2869179