Intersections of dilatates of convex bodies
HTML articles powered by AMS MathViewer
- by Stefano Campi, Richard J. Gardner and Paolo Gronchi
- Trans. Amer. Math. Soc. 364 (2012), 1193-1210
- DOI: https://doi.org/10.1090/S0002-9947-2011-05455-3
- Published electronically: October 25, 2011
- PDF | Request permission
Abstract:
We initiate a systematic investigation into the nature of the function $\alpha _K(L,\rho )$ that gives the volume of the intersection of one convex body $K$ in $\mathbb {R}^n$ and a dilatate $\rho L$ of another convex body $L$ in $\mathbb {R}^n$, as well as the function $\eta _K(L,\rho )$ that gives the $(n-1)$-dimensional Hausdorff measure of the intersection of $K$ and the boundary $\partial (\rho L)$ of $\rho L$. The focus is on the concavity properties of $\alpha _K(L,\rho )$. Of particular interest is the case when $K$ and $L$ are symmetric with respect to the origin. In this situation, there is an interesting change in the concavity properties of $\alpha _K(L,\rho )$ between dimension 2 and dimensions 3 or higher. When $L$ is the unit ball, an important special case with connections to E. Lutwak’s dual Brunn-Minkowski theory, we prove that this change occurs between dimension 2 and dimensions 4 or higher, and conjecture that it occurs between dimension 3 and dimension 4. We also establish an isoperimetric inequality with equality condition for subsets of equatorial zones in the sphere $S^2$, and apply this and the Brunn-Minkowski inequality in the sphere to obtain results related to this conjecture, as well as to the properties of a new type of symmetral of a convex body, which we call the equatorial symmetral.References
- Rafael Benguria, Michael Levitin, and Leonid Parnovski, Fourier transform, null variety, and Laplacian’s eigenvalues, J. Funct. Anal. 257 (2009), no. 7, 2088–2123. MR 2548031, DOI 10.1016/j.jfa.2009.06.022
- T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes, Gauthier-Villars, Paris, 1929.
- T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR 920366
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Stefano Campi, Isoperimetric deficit and convex plane sets of maximum translative discrepancy, Geom. Dedicata 43 (1992), no. 1, 71–81. MR 1169365, DOI 10.1007/BF00181298
- S. Dar, A Brunn-Minkowski-type inequality, Geom. Dedicata 77 (1999), no. 1, 1–9. MR 1706512, DOI 10.1023/A:1005132006433
- R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. MR 1298719, DOI 10.2307/2118606
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. MR 1689343, DOI 10.2307/120978
- R. J. Gardner, Eva B. Vedel Jensen, and A. Volčič, Geometric tomography and local stereology, Adv. in Appl. Math. 30 (2003), no. 3, 397–423. MR 1973951, DOI 10.1016/S0196-8858(02)00502-X
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
- Erwin Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. MR 380631
- Erwin Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl. (4) 119 (1979), 139–148. MR 551220, DOI 10.1007/BF02413172
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- Georges Pólya, Sur la symétrisation circulaire, C. R. Acad. Sci. Paris 230 (1950), 25–27 (French). MR 33402
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
- J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry, Trans. Amer. Math. Soc. 307 (1988), no. 1, 373–382. MR 936821, DOI 10.1090/S0002-9947-1988-0936821-5
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Gao Yong Zhang, Intersection bodies and the Busemann-Petty inequalities in $\textbf {R}^4$, Ann. of Math. (2) 140 (1994), no. 2, 331–346. MR 1298716, DOI 10.2307/2118603
- Gaoyong Zhang, A positive solution to the Busemann-Petty problem in $\mathbf R^4$, Ann. of Math. (2) 149 (1999), no. 2, 535–543. MR 1689339, DOI 10.2307/120974
Bibliographic Information
- Stefano Campi
- Affiliation: Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy
- MR Author ID: 205850
- Email: campi@dii.unisi.it
- Richard J. Gardner
- Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
- MR Author ID: 195745
- Email: Richard.Gardner@wwu.edu
- Paolo Gronchi
- Affiliation: Dipartimento di Matematica e Applicazioni per l’Architettura, Università degli Studi di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy
- MR Author ID: 340283
- Email: paolo@fi.iac.cnr.it
- Received by editor(s): February 22, 2010
- Published electronically: October 25, 2011
- Additional Notes: The second author was supported in part by the U.S. National Science Foundation Grant DMS-0603307.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1193-1210
- MSC (2010): Primary 52A20, 52A40; Secondary 52A38
- DOI: https://doi.org/10.1090/S0002-9947-2011-05455-3
- MathSciNet review: 2869174