Sharp bounds for general commutators on weighted Lebesgue spaces
HTML articles powered by AMS MathViewer
- by Daewon Chung, M. Cristina Pereyra and Carlos Perez
- Trans. Amer. Math. Soc. 364 (2012), 1163-1177
- DOI: https://doi.org/10.1090/S0002-9947-2011-05534-0
- Published electronically: November 2, 2011
- PDF | Request permission
Abstract:
We show that if a linear operator $T$ is bounded on a weighted Lebesgue space $L^2(w)$ and obeys a linear bound with respect to the $A_2$ constant of the weight, then its commutator $[b,T]$ with a function $b$ in $BMO$ will obey a quadratic bound with respect to the $A_2$ constant of the weight. We also prove that the $k$th-order commutator $T^k_b=[b,T^{k-1}_b]$ will obey a bound that is a power $(k+1)$ of the $A_2$ constant of the weight. Sharp extrapolation provides corresponding $L^p(w)$ estimates. In particular these estimates hold for $T$ any Calderón-Zygmund singular integral operator. The results are sharp in terms of the growth of the operator norm with respect to the $A_p$ constant of the weight for all $1<p<\infty$, all $k$, and all dimensions, as examples involving the Riesz transforms, power functions and power weights show.References
- Josefina Álvarez, Richard J. Bagby, Douglas S. Kurtz, and Carlos Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), no. 2, 195–209. MR 1211818, DOI 10.4064/sm-104-2-195-209
- Kari Astala, Tadeusz Iwaniec, and Eero Saksman, Beltrami operators in the plane, Duke Math. J. 107 (2001), no. 1, 27–56. MR 1815249, DOI 10.1215/S0012-7094-01-10713-8
- Oleksandra V. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space $L_2(w)$, J. Funct. Anal. 255 (2008), no. 4, 994–1007. MR 2433959, DOI 10.1016/j.jfa.2008.04.025
- Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253–272. MR 1124164, DOI 10.1090/S0002-9947-1993-1124164-0
- D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz and Beurling transforms on weighted Lebesgue spaces, Indiana U. Math. J., to appear, Preprint (2010) available at http://arxiv.org/abs/1001.0755
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- David Cruz-Uribe, José María Martell, and Carlos Pérez, Sharp weighted estimates for approximating dyadic operators, Electron. Res. Announc. Math. Sci. 17 (2010), 12–19. MR 2628851, DOI 10.3934/era.2010.17.12
- D. Cruz-Uribe, J. Martell, and C. Pérez, Sharp weighted estimates for classical operators, to appear Adv. Math., available at http://www.arxiv.org/abs/1001.4254
- D. Cruz-Uribe, J. Martell, and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia.(Operator Theory: Advances and Applications) Springer Basel; 1st Edition. edition (April 28, 2011).
- D. Cruz-Uribe and K. Moen, Sharp norm inequalities for commutators of classical operators, to appear Publ. Math., available at http://www.arxiv.org/abs/1008.0381
- Oliver Dragičević, Loukas Grafakos, María Cristina Pereyra, and Stefanie Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73–91. MR 2140200, DOI 10.5565/PUBLMAT_{4}9105_{0}3
- Oliver Dragičević and Alexander Volberg, Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms, Michigan Math. J. 51 (2003), no. 2, 415–435. MR 1992955, DOI 10.1307/mmj/1060013205
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- S. Hukovic, S. Treil, and A. Volberg, The Bellman functions and sharp weighted inequalities for square functions, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., vol. 113, Birkhäuser, Basel, 2000, pp. 97–113. MR 1771755
- T. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, to appear Annals of Math., available at http://arxiv.org/abs/1007.4330
- T. Hytönen, C. Pérez, S. Treil, and A. Volberg, Sharp weighted estimates of the dyadic shifts and $A_2$ conjecture, Preprint (2010) available at http://arxiv.org.abs/1010.0755
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Jean-Lin Journé, Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, vol. 994, Springer-Verlag, Berlin, 1983. MR 706075, DOI 10.1007/BFb0061458
- Michael T. Lacey, Stefanie Petermichl, and Maria Carmen Reguera, Sharp $A_2$ inequality for Haar shift operators, Math. Ann. 348 (2010), no. 1, 127–141. MR 2657437, DOI 10.1007/s00208-009-0473-y
- Andrei K. Lerner, An elementary approach to several results on the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2829–2833. MR 2399047, DOI 10.1090/S0002-9939-08-09318-0
- Andrei K. Lerner, Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math. 226 (2011), no. 5, 3912–3926. MR 2770437, DOI 10.1016/j.aim.2010.11.009
- A. Lerner, S. Ombrosi and C. Pérez, Sharp $A_1$ bounds for Calderón-Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden, International Mathematics Research Notices, 2008, no. 6, Art. ID rnm161, 11 pp. 42B20.
- Andrei K. Lerner, Sheldy Ombrosi, and Carlos Pérez, $A_1$ bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), no. 1, 149–156. MR 2480568, DOI 10.4310/MRL.2009.v16.n1.a14
- C. Ortiz, Quadratic $A_1$ bounds for commutators of singular integrals with BMO functions, Indiana U. Math. J., to appear.
- Carlos Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), no. 1, 163–185. MR 1317714, DOI 10.1006/jfan.1995.1027
- Carlos Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (1997), no. 6, 743–756. MR 1481632, DOI 10.1007/BF02648265
- C. Pérez, A course on Singular Integrals and weights, to appear in Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser editors.
- C. Pérez, S. Treil, and A. Volberg, On $A_2$ conjecture and corona decomposition of weights. Preprint 2010, available at http://arxiv.org/abs/1006.2630.
- S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical $A_p$ characteristic, Amer. J. Math. 129 (2007), no. 5, 1355–1375. MR 2354322, DOI 10.1353/ajm.2007.0036
- Stefanie Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1237–1249. MR 2367098, DOI 10.1090/S0002-9939-07-08934-4
- Stefanie Petermichl and Alexander Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305. MR 1894362, DOI 10.1215/S0012-9074-02-11223-X
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- Janine Wittwer, A sharp estimate on the norm of the martingale transform, Math. Res. Lett. 7 (2000), no. 1, 1–12. MR 1748283, DOI 10.4310/MRL.2000.v7.n1.a1
Bibliographic Information
- Daewon Chung
- Affiliation: Department of Mathematics and Statistics MSC01 1115, University of New Mexico, Albuquerque, New Mexico 87131-0001
- Email: midiking@math.unm.edu
- M. Cristina Pereyra
- Affiliation: Department of Mathematics and Statistics, MSC01 1115, University of New Mexico, Albuquerque, New Mexico 87131-0001
- Email: crisp@math.unm.edu
- Carlos Perez
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad De Sevilla, 41080 Sevilla, Spain
- Email: carlosperez@us.es
- Received by editor(s): February 11, 2010
- Published electronically: November 2, 2011
- Additional Notes: The third author would like to acknowledge the support of the Spanish Ministry of Science and Innovation via grant MTM2009-08934.
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 1163-1177
- MSC (2010): Primary 42B20, 42B25; Secondary 46B70, 47B38
- DOI: https://doi.org/10.1090/S0002-9947-2011-05534-0
- MathSciNet review: 2869172