Scattering for the cubic Klein–Gordon equation in two space dimensions
HTML articles powered by AMS MathViewer
- by Rowan Killip, Betsy Stovall and Monica Visan
- Trans. Amer. Math. Soc. 364 (2012), 1571-1631
- DOI: https://doi.org/10.1090/S0002-9947-2011-05536-4
- Published electronically: September 15, 2011
- PDF | Request permission
Abstract:
We consider both the defocusing and focusing cubic nonlinear Klein–Gordon equations \[ u_{tt} - \Delta u + u \pm u^3 =0 \] in two space dimensions for real-valued initial data $u(0)\in H^1_x$ and $u_t(0)\in L^2_x$. We show that in the defocusing case, solutions are global and have finite global $L^4_{t,x}$ spacetime bounds. In the focusing case, we characterize the dichotomy between this behaviour and blowup for initial data with energy less than that of the ground state.
These results rely on analogous statements for the two-dimensional cubic nonlinear Schrödinger equation, which are known in the defocusing case and for spherically-symmetric initial data in the focusing case. Thus, our results are mostly unconditional.
It was previously shown by Nakanishi that spacetime bounds for Klein–Gordon equations imply the same for nonlinear Schrödinger equations.
References
- T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations. Preprint arXiv:1006.1485.
- Hajer Bahouri and Patrick Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131–175. MR 1705001
- Pascal Bégout and Ana Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5257–5282. MR 2327030, DOI 10.1090/S0002-9947-07-04250-X
- J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), no. 1, 145–171. MR 1626257, DOI 10.1090/S0894-0347-99-00283-0
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490. MR 699419, DOI 10.1090/S0002-9939-1983-0699419-3
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. MR 2018661
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2) 167 (2008), no. 3, 767–865. MR 2415387, DOI 10.4007/annals.2008.167.767
- P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413–439. MR 928265, DOI 10.1090/S0894-0347-1988-0928265-0
- B. Dodson, Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d \geq 3$. Preprint arXiv:0912.2467
- B. Dodson, Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d = 2$. Preprint arXiv:1006.1375
- Thomas Duyckaerts, Justin Holmer, and Svetlana Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett. 15 (2008), no. 6, 1233–1250. MR 2470397, DOI 10.4310/MRL.2008.v15.n6.a13
- J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), no. 4, 399–442 (English, with French summary). MR 824083
- Slim Ibrahim, Mohamed Majdoub, Nader Masmoudi, and Kenji Nakanishi, Scattering for the two-dimensional energy-critical wave equation, Duke Math. J. 150 (2009), no. 2, 287–329. MR 2569615, DOI 10.1215/00127094-2009-053
- S. Ibrahim, N. Masmoudi, and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein–Gordon equation. Preprint arXiv:1001.1474.
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048
- Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645–675. MR 2257393, DOI 10.1007/s00222-006-0011-4
- Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147–212. MR 2461508, DOI 10.1007/s11511-008-0031-6
- Sahbi Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal. 235 (2006), no. 1, 171–192. MR 2216444, DOI 10.1016/j.jfa.2005.10.005
- R. Killip, S. Kwon, S. Shao, and M. Visan, On the mass-critical generalized KdV equation. Preprint arXiv:0907.5412.
- Rowan Killip, Terence Tao, and Monica Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6, 1203–1258. MR 2557134, DOI 10.4171/JEMS/180
- R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity. To appear in proceedings of the Clay summer school “Evolution Equations”, June 23–July 18, 2008, Eidgenössische Technische Hochschule, Zürich.
- Rowan Killip and Monica Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math. 132 (2010), no. 2, 361–424. MR 2654778, DOI 10.1353/ajm.0.0107
- Rowan Killip, Monica Visan, and Xiaoyi Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE 1 (2008), no. 2, 229–266. MR 2472890, DOI 10.2140/apde.2008.1.229
- Man Kam Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. MR 969899, DOI 10.1007/BF00251502
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145 (English, with French summary). MR 778970
- A. Moyua, A. Vargas, and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in $\mathbf R^3$, Duke Math. J. 96 (1999), no. 3, 547–574. MR 1671214, DOI 10.1215/S0012-7094-99-09617-5
- Kenji Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power, Internat. Math. Res. Notices 1 (1999), 31–60. MR 1666973, DOI 10.1155/S1073792899000021
- Kenji Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $1$ and $2$, J. Funct. Anal. 169 (1999), no. 1, 201–225. MR 1726753, DOI 10.1006/jfan.1999.3503
- Kenji Nakanishi, Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations, Tohoku Math. J. (2) 53 (2001), no. 2, 285–303. MR 1829982, DOI 10.2748/tmj/1178207482
- Kenji Nakanishi, Transfer of global wellposedness from nonlinear Klein-Gordon equation to nonlinear Schrödinger equation, Hokkaido Math. J. 37 (2008), no. 4, 749–771. MR 2474174, DOI 10.14492/hokmj/1249046367
- L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273–303. MR 402291, DOI 10.1007/BF02761595
- E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math. 129 (2007), no. 1, 1–60. MR 2288737, DOI 10.1353/ajm.2007.0004
- Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699–715. MR 904948, DOI 10.1215/S0012-7094-87-05535-9
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–20. MR 545235
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), no. 6, 1359–1384. MR 2033842, DOI 10.1007/s00039-003-0449-0
- Terence Tao, Two remarks on the generalised Korteweg-de Vries equation, Discrete Contin. Dyn. Syst. 18 (2007), no. 1, 1–14. MR 2276483, DOI 10.3934/dcds.2007.18.1
- Terence Tao and Monica Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations (2005), No. 118, 28. MR 2174550
- Terence Tao, Monica Visan, and Xiaoyi Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1281–1343. MR 2354495, DOI 10.1080/03605300701588805
- Terence Tao, Monica Visan, and Xiaoyi Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math. 20 (2008), no. 5, 881–919. MR 2445122, DOI 10.1515/FORUM.2008.042
- Terence Tao, Monica Visan, and Xiaoyi Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J. 140 (2007), no. 1, 165–202. MR 2355070, DOI 10.1215/S0012-7094-07-14015-8
- Monica Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), no. 2, 281–374. MR 2318286, DOI 10.1215/S0012-7094-07-13825-0
- Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874–878. MR 934859, DOI 10.1090/S0002-9939-1988-0934859-0
- Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), no. 4, 567–576. MR 691044
Bibliographic Information
- Rowan Killip
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Betsy Stovall
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Monica Visan
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- Received by editor(s): August 20, 2010
- Received by editor(s) in revised form: December 27, 2010
- Published electronically: September 15, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 1571-1631
- MSC (2010): Primary 35L71; Secondary 35Q40
- DOI: https://doi.org/10.1090/S0002-9947-2011-05536-4
- MathSciNet review: 2869186