A dynamical pairing between two rational maps
HTML articles powered by AMS MathViewer
- by Clayton Petsche, Lucien Szpiro and Thomas J. Tucker
- Trans. Amer. Math. Soc. 364 (2012), 1687-1710
- DOI: https://doi.org/10.1090/S0002-9947-2011-05350-X
- Published electronically: November 10, 2011
- PDF | Request permission
Abstract:
Given two rational maps $\varphi$ and $\psi$ on $\mathbb {P}^1$ of degree at least two, we study a symmetric, nonnegative real-valued pairing $\langle \varphi ,\psi \rangle$ which is closely related to the canonical height functions $h_\varphi$ and $h_\psi$ associated to these maps. Our main results show a strong connection between the value of $\langle \varphi ,\psi \rangle$ and the canonical heights of points which are small with respect to at least one of the two maps $\varphi$ and $\psi$. Several necessary and sufficient conditions are given for the vanishing of $\langle \varphi ,\psi \rangle$. We give an explicit upper bound on the difference between the canonical height $h_\psi$ and the standard height $h_{\mathrm {st}}$ in terms of $\langle \sigma ,\psi \rangle$, where $\sigma (x)=x^2$ denotes the squaring map. The pairing $\langle \sigma ,\psi \rangle$ is computed or approximated for several families of rational maps $\psi$.References
- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192 (Russian). MR 0472815
- M. Baker and L. DeMarco, Preperiodic points and unlikely intersections, Preprint, http://arxiv.org/abs/0911.0918
- Matthew H. Baker and Robert Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 625–688 (English, with English and French summaries). MR 2244226
- Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159, American Mathematical Society, Providence, RI, 2010. MR 2599526, DOI 10.1090/surv/159
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Yuri Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), no. 3, 465–476. MR 1470340, DOI 10.1215/S0012-7094-97-08921-3
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI 10.1090/S0894-0347-1994-1260106-X
- David W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981), no. 4, 453–469. MR 644535, DOI 10.4153/CMB-1981-069-5
- Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103–144 (1965). MR 194595, DOI 10.1007/BF02591353
- Gregory S. Call and Joseph H. Silverman, Canonical heights on varieties with morphisms, Compositio Math. 89 (1993), no. 2, 163–205. MR 1255693
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI 10.1515/CRELLE.2006.049
- Antoine Chambert-Loir and Amaury Thuillier, Mesures de Mahler et équidistribution logarithmique, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 977–1014 (French, with English and French summaries). MR 2543659
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI 10.1090/conm/067/902592
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI 10.2307/2007043
- Charles Favre and Juan Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), no. 2, 311–361 (French, with English and French summaries). MR 2221116, DOI 10.1007/s00208-006-0751-x
- Charles Favre and Juan Rivera-Letelier, Théorie ergodique des fractions rationnelles sur un corps ultramétrique, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 116–154 (French, with English and French summaries). MR 2578470, DOI 10.1112/plms/pdp022
- Alexandre Freire, Artur Lopes, and Ricardo Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45–62. MR 736568, DOI 10.1007/BF02584744
- Shu Kawaguchi and Joseph H. Silverman, Dynamics of projective morphisms having identical canonical heights, Proc. Lond. Math. Soc. (3) 95 (2007), no. 2, 519–544. MR 2352570, DOI 10.1112/plms/pdm022
- M. Ju. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351–385. MR 741393, DOI 10.1017/S0143385700002030
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- A. Mimar. On the preperiodic points of an endomorphism of $\mathbb {P}^1\times \mathbb {P}^1$ which lie on a curve. Ph.D. Dissertation, Columbia University (1997).
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- L. Szpiro and T.J. Tucker. Equidistribution and generalized Mahler measures, Preprint (2009).
- L. Szpiro, E. Ullmo, and S. Zhang, Équirépartition des petits points, Invent. Math. 127 (1997), no. 2, 337–347 (French). MR 1427622, DOI 10.1007/s002220050123
- A. Thuillier. Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov. Ph.D. thesis, University of Rennes, 2005.
- B. L. van der Waerden, Modern Algebra. Vol. I, Frederick Ungar Publishing Co., New York, N. Y., 1949. Translated from the second revised German edition by Fred Blum; With revisions and additions by the author. MR 0029363
- Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
Bibliographic Information
- Clayton Petsche
- Affiliation: Department of Mathematics and Statistics, Hunter College, 695 Park Avenue, New York, New York 10065
- Address at time of publication: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
- Email: cpetsche@hunter.cuny.edu, petschec@math.oregonstate.edu
- Lucien Szpiro
- Affiliation: Ph.D. Program in Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016-4309
- Email: lszpiro@gc.cuny.edu
- Thomas J. Tucker
- Affiliation: Department of Mathematics, Hylan Building, University of Rochester, Rochester, New York 14627
- MR Author ID: 310767
- ORCID: 0000-0002-8582-2198
- Email: ttucker@math.rochester.edu
- Received by editor(s): November 13, 2009
- Received by editor(s) in revised form: March 6, 2010
- Published electronically: November 10, 2011
- Additional Notes: The first author was partially supported by NSF Grant DMS-0901147.
The second author was supported by NSF Grants DMS-0854746 and DMS-0739346.
The third author was supported by NSF Grants DMS-0801072 and DMS-0854839. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1687-1710
- MSC (2010): Primary 11G50, 14G40, 37P15
- DOI: https://doi.org/10.1090/S0002-9947-2011-05350-X
- MathSciNet review: 2869188