An effective lower bound for group complexity of finite semigroups and automata
HTML articles powered by AMS MathViewer
- by Karsten Henckell, John Rhodes and Benjamin Steinberg
- Trans. Amer. Math. Soc. 364 (2012), 1815-1857
- DOI: https://doi.org/10.1090/S0002-9947-2011-05379-1
- Published electronically: November 8, 2011
- PDF | Request permission
Abstract:
The question of computing the group complexity of finite semigroups and automata was first posed in K. Krohn and J. Rhodes, Complexity of finite semigroups, Annals of Mathematics (2) 88 (1968), 128–160, motivated by the Prime Decomposition Theorem of K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines, Transactions of the American Mathematical Society 116 (1965), 450–464. Here we provide an effective lower bound for group complexity.References
- Jorge Almeida, Finite semigroups and universal algebra, Series in Algebra, vol. 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. Translated from the 1992 Portuguese original and revised by the author. MR 1331143
- Jorge Almeida and Benjamin Steinberg, On the decidability of iterated semidirect products with applications to complexity, Proc. London Math. Soc. (3) 80 (2000), no. 1, 50–74. MR 1719180, DOI 10.1112/S0024611500012144
- Jorge Almeida and Benjamin Steinberg, Syntactic and global semigroup theory: a synthesis approach, Algorithmic problems in groups and semigroups (Lincoln, NE, 1998) Trends Math., Birkhäuser Boston, Boston, MA, 2000, pp. 1–23. MR 1750489
- C. J. Ash, Inevitable graphs: a proof of the type $\textrm {II}$ conjecture and some related decision procedures, Internat. J. Algebra Comput. 1 (1991), no. 1, 127–146. MR 1112302, DOI 10.1142/S0218196791000079
- K. Auinger, A new proof of the Rhodes type II conjecture, Internat. J. Algebra Comput. 14 (2004), no. 5-6, 551–568. International Conference on Semigroups and Groups in honor of the 65th birthday of Prof. John Rhodes. MR 2104770, DOI 10.1142/S0218196704001918
- Beverly Austin, Karsten Henckell, Chrystopher Nehaniv, and John Rhodes, Subsemigroups and complexity via the presentation lemma, J. Pure Appl. Algebra 101 (1995), no. 3, 245–289. MR 1348570, DOI 10.1016/0022-4049(94)00063-O
- T. A. Dowling, A class of geometric lattices based on finite groups, J. Combinatorial Theory Ser. B 14 (1973), 61–86. MR 307951, DOI 10.1016/s0095-8956(73)80007-3
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
- Karsten Henckell, Pointlike sets: the finest aperiodic cover of a finite semigroup, J. Pure Appl. Algebra 55 (1988), no. 1-2, 85–126. MR 968571, DOI 10.1016/0022-4049(88)90042-4
- Karsten Henckell, Stuart W. Margolis, Jean-Eric Pin, and John Rhodes, Ash’s type $\textrm {II}$ theorem, profinite topology and Mal′cev products. I, Internat. J. Algebra Comput. 1 (1991), no. 4, 411–436. MR 1154442, DOI 10.1142/S0218196791000298
- Karsten Henckell, John Rhodes, and Benjamin Steinberg, Aperiodic pointlikes and beyond, Internat. J. Algebra Comput. 20 (2010), no. 2, 287–305. MR 2646752, DOI 10.1142/S0218196710005662
- Karsten Henckell, John Rhodes, and Benjamin Steinberg, A profinite approach to stable pairs, Internat. J. Algebra Comput. 20 (2010), no. 2, 269–285. MR 2646751, DOI 10.1142/S0218196710005650
- Joel Karnofsky and John Rhodes, Decidability of complexity one-half for finite semigroups, Semigroup Forum 24 (1982), no. 1, 55–66. MR 645703, DOI 10.1007/BF02572755
- Kenneth Krohn and John Rhodes, Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc. 116 (1965), 450–464. MR 188316, DOI 10.1090/S0002-9947-1965-0188316-1
- Kenneth Krohn and John Rhodes, Complexity of finite semigroups, Ann. of Math. (2) 88 (1968), 128–160. MR 236294, DOI 10.2307/1970558
- K. Krohn, J. Rhodes, and B. Tilson. Algebraic theory of machines, languages, and semigroups. Edited by Michael A. Arbib. With a major contribution by Kenneth Krohn and John L. Rhodes. Academic Press, New York, 1968. Chapters 1, 5–9.
- Stuart W. Margolis, $k$-transformation semigroups and a conjecture of Tilson, J. Pure Appl. Algebra 17 (1980), no. 3, 313–322. MR 579091, DOI 10.1016/0022-4049(80)90053-5
- Stuart W. Margolis and Bret Tilson, An upper bound for the complexity of transformation semigroups, J. Algebra 73 (1981), no. 2, 518–537. MR 640046, DOI 10.1016/0021-8693(81)90332-X
- J. McCammond, J. Rhodes, and B. Steinberg. Geometric semigroup theory. Internat. J. Algebra Comput., to appear.
- John Rhodes, The fundamental lemma of complexity for arbitrary finite semigroups, Bull. Amer. Math. Soc. 74 (1968), 1104–1109. MR 232873, DOI 10.1090/S0002-9904-1968-12064-6
- John Rhodes, Algebraic theory of finite semigroups. Structure numbers and structure theorems for finite semigroups, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 125–162. MR 0281817
- John Rhodes, Proof of the fundamental lemma of complexity (weak version) for arbitrary finite semigroups, J. Combinatorial Theory Ser. A 10 (1971), 22–73. MR 274615, DOI 10.1016/0097-3165(71)90064-1
- J. Rhodes. Axioms for complexity for all finite semigroups. Advances in Math., 11(2):210–214, 1973.
- John Rhodes, Proof of the fundamental lemma of complexity (strong version) for arbitrary finite semigroups, J. Combinatorial Theory Ser. A 16 (1974), 209–214. MR 338235, DOI 10.1016/0097-3165(74)90045-4
- John Rhodes, Kernel systems—a global study of homomorphisms on finite semigroups, J. Algebra 49 (1977), no. 1, 1–45. MR 463337, DOI 10.1016/0021-8693(77)90265-4
- J. Rhodes. Flows on automata. Technical report, Center for Pure & Applied Mathematics, University of California, Berkeley, CA 94720-3840, 1995.
- John Rhodes and Benjamin Steinberg, Krohn-Rhodes complexity pseudovarieties are not finitely based, Theor. Inform. Appl. 39 (2005), no. 1, 279–296. MR 2132592, DOI 10.1051/ita:2005016
- John Rhodes and Benjamin Steinberg, Complexity pseudovarieties are not local; type II subsemigroups can fall arbitrarily in complexity, Internat. J. Algebra Comput. 16 (2006), no. 4, 739–748. MR 2258836, DOI 10.1142/S0218196706003177
- John Rhodes and Benjamin Steinberg, The $q$-theory of finite semigroups, Springer Monographs in Mathematics, Springer, New York, 2009. MR 2472427, DOI 10.1007/b104443
- John Rhodes and Bret Tilson, Local complexity of finite semigroups, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 149–168. MR 0432792
- John Rhodes and Bret R. Tilson, Lower bounds for complexity of finite semigroups, J. Pure Appl. Algebra 1 (1971), no. 1, 79–95. MR 285649, DOI 10.1016/0022-4049(71)90012-0
- John Rhodes and Bret R. Tilson, Improved lower bounds for the complexity of finite semigroups, J. Pure Appl. Algebra 2 (1972), 13–71. MR 299708, DOI 10.1016/0022-4049(72)90022-9
- Luis Ribes and Pavel A. Zalesskii, On the profinite topology on a free group, Bull. London Math. Soc. 25 (1993), no. 1, 37–43. MR 1190361, DOI 10.1112/blms/25.1.37
- Benjamin Steinberg, On aperiodic relational morphisms, Semigroup Forum 70 (2005), no. 1, 1–43. MR 2107191, DOI 10.1007/s00233-004-0148-7
- J. P. Stiffler. Extension of the fundamental theorem of finite semigroups. Advances in Math., 11(2):159–209, 1973.
- Bret Tilson, Decomposition and complexity of finite semigroups, Semigroup Forum 3 (1971/72), no. 3, 189–250. MR 296201, DOI 10.1007/BF02572961
- B. Tilson. Complexity of two$\mathscr J$-class semigroups. Advances in Math., 11(2):215–237, 1973.
- B. Tilson, On the complexity of finite semigroups, J. Pure Appl. Algebra 5 (1974), 187–208. MR 364517, DOI 10.1016/0022-4049(74)90046-2
- B. Tilson. Complexity of semigroups and morphisms, chapter XII, pages 313–384. In Eilenberg \cite{Eilenberg}, 1976.
- B. Tilson. Depth decomposition theorem, chapter XI, pages 287–312. In Eilenberg \cite{Eilenberg}, 1976.
- Bret Tilson, Categories as algebra: an essential ingredient in the theory of monoids, J. Pure Appl. Algebra 48 (1987), no. 1-2, 83–198. MR 915990, DOI 10.1016/0022-4049(87)90108-3
- Bret Tilson, Type $\textrm {II}$ redux, Semigroups and their applications (Chico, Calif., 1986) Reidel, Dordrecht, 1987, pp. 201–205. MR 900660
- Bret R. Tilson, Appendix to “Algebraic theory of finite semigroups”. On the $p$-length of $p$-solvable semigroups: Preliminary results, Semigroups (Proc. Sympos., Wayne State Univ., Detroit, Mich., 1968) Academic Press, New York, 1969, pp. 163–208. MR 0277636
Bibliographic Information
- Karsten Henckell
- Affiliation: Department of Mathematics/Computer Science, New College of Florida, 5800 Bay Shore Road, Sarasota, Florida 34243-2109
- Email: KHenckell@ncf.edu
- John Rhodes
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- Email: jrhodes@math.berkeley.edu
- Benjamin Steinberg
- Affiliation: School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario Canada K1S 5B6
- Address at time of publication: Department of Mathematics, City College of New York, NAC 8/133, Convent Avenue at 138th Street, New York, New York 10031
- MR Author ID: 633258
- Email: bsteinbg@math.carleton.ca, bsteinberg@ccny.cuny.edu
- Received by editor(s): December 4, 2008
- Received by editor(s) in revised form: May 11, 2010
- Published electronically: November 8, 2011
- Additional Notes: The second and third authors gratefully acknowledge the support of NSERC and the Committee on Research of the Academic Senate of the University of California at Berkeley for their generous support.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 1815-1857
- MSC (2010): Primary 20M07
- DOI: https://doi.org/10.1090/S0002-9947-2011-05379-1
- MathSciNet review: 2869193