Approximate unitary equivalence in simple $C^*$-algebras of tracial rank one
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Trans. Amer. Math. Soc. 364 (2012), 2021-2086
- DOI: https://doi.org/10.1090/S0002-9947-2011-05431-0
- Published electronically: December 2, 2011
- PDF | Request permission
Abstract:
Let $C$ be a unital AH-algebra and let $A$ be a unital separable simple $C^*$-algebra with tracial rank no more than one. Suppose that $\phi , \psi : C\to A$ are two unital monomorphisms. With some restriction on $C,$ we show that $\phi$ and $\psi$ are approximately unitarily equivalent if and only if \begin{eqnarray}\nonumber [\phi ]&=&[\psi ]\,\,\,\text {in}\,\,\, KL(C,A),\\\nonumber \tau \circ \phi &=&\tau \circ \psi \ \text {for all tracial states of}\,\,\, A\ \text {and}\\\nonumber \phi ^{\ddagger }&=&\psi ^{\ddagger }, \end{eqnarray} where $\phi ^{\ddagger }$ and $\psi ^{\ddagger }$ are homomorphisms from $U(C)/CU(C)\to U(A)/CU(A)$ induced by $\phi$ and $\psi ,$ respectively, and where $CU(C)$ and $CU(A)$ are closures of the subgroup generated by commutators of the unitary groups of $C$ and $B.$
A more practical but approximate version of the above is also presented.
References
- Bruce Blackadar, Marius Dădărlat, and Mikael Rørdam, The real rank of inductive limit $C^*$-algebras, Math. Scand. 69 (1991), no. 2, 211–216 (1992). MR 1156427, DOI 10.7146/math.scand.a-12379
- Ola Bratteli, George A. Elliott, David E. Evans, and Akitaka Kishimoto, Homotopy of a pair of approximately commuting unitaries in a simple $C^*$-algebra, J. Funct. Anal. 160 (1998), no. 2, 466–523. MR 1665295, DOI 10.1006/jfan.1998.3261
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713
- M. Dădărlat and T. A. Loring, The $K$-theory of abelian subalgebras of AF algebras, J. Reine Angew. Math. 432 (1992), 39–55. MR 1184757
- Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377. MR 1404333, DOI 10.1215/S0012-7094-96-08412-4
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- George A. Elliott and Guihua Gong, On the classification of $C^*$-algebras of real rank zero. II, Ann. of Math. (2) 144 (1996), no. 3, 497–610. MR 1426886, DOI 10.2307/2118565
- George A. Elliott, Guihua Gong, and Liangqing Li, Injectivity of the connecting maps in AH inductive limit systems, Canad. Math. Bull. 48 (2005), no. 1, 50–68. MR 2118763, DOI 10.4153/CMB-2005-005-9
- George A. Elliott, Guihua Gong, and Liangqing Li, On the classification of simple inductive limit $C^*$-algebras. II. The isomorphism theorem, Invent. Math. 168 (2007), no. 2, 249–320. MR 2289866, DOI 10.1007/s00222-006-0033-y
- Ruy Exel, The soft torus and applications to almost commuting matrices, Pacific J. Math. 160 (1993), no. 2, 207–217. MR 1233352
- George A. Elliott and Mikael Rørdam, Classification of certain infinite simple $C^*$-algebras. II, Comment. Math. Helv. 70 (1995), no. 4, 615–638. MR 1360606, DOI 10.1007/BF02566025
- Guihua Gong, On the classification of simple inductive limit $C^*$-algebras. I. The reduction theorem, Doc. Math. 7 (2002), 255–461. MR 2014489
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and almost commuting matrices, J. Operator Theory 40 (1998), no. 2, 217–275. MR 1660385
- Guihua Gong and Huaxin Lin, Classification of homomorphisms from $C(X)$ to simple $C^*$-algebras of real rank zero, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 181–206. MR 1778701, DOI 10.1007/s101140000036
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and $K$-theory, Internat. J. Math. 11 (2000), no. 8, 983–1000. MR 1797674, DOI 10.1142/S0129167X0000043X
- Paul R. Halmos and Herbert E. Vaughan, The marriage problem, Amer. J. Math. 72 (1950), 214–215. MR 33330, DOI 10.2307/2372148
- Huaxin Lin, Homomorphisms from $C^*$-algebras of continuous trace, Math. Scand. 86 (2000), no. 2, 249–272. MR 1754997, DOI 10.7146/math.scand.a-14292
- Huaxin Lin, Tracially AF $C^*$-algebras, Trans. Amer. Math. Soc. 353 (2001), no. 2, 693–722. MR 1804513, DOI 10.1090/S0002-9947-00-02680-5
- Huaxin Lin, The tracial topological rank of $C^*$-algebras, Proc. London Math. Soc. (3) 83 (2001), no. 1, 199–234. MR 1829565, DOI 10.1112/plms/83.1.199
- Huaxin Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884366, DOI 10.1142/9789812799883
- Huaxin Lin, Classification of simple $C^*$-algebras and higher dimensional noncommutative tori, Ann. of Math. (2) 157 (2003), no. 2, 521–544. MR 1973053, DOI 10.4007/annals.2003.157.521
- Huaxin Lin, Weak semiprojectivity in purely infinite simple $C^\ast$-algebras, Canad. J. Math. 59 (2007), no. 2, 343–371. MR 2310621, DOI 10.4153/CJM-2007-015-9
- Huaxin Lin, Furstenberg transformations and approximate conjugacy, Canad. J. Math. 60 (2008), no. 1, 189–207. MR 2381172, DOI 10.4153/CJM-2008-008-2
- Huaxin Lin, Simple nuclear $C^*$-algebras of tracial topological rank one, J. Funct. Anal. 251 (2007), no. 2, 601–679. MR 2356425, DOI 10.1016/j.jfa.2007.06.016
- Huaxin Lin, Classification of homomorphisms and dynamical systems, Trans. Amer. Math. Soc. 359 (2007), no. 2, 859–895. MR 2255199, DOI 10.1090/S0002-9947-06-03932-8
- H. Lin, Embedding crossed products into a unital simple AF-algebra, preprint, arxiv.org/ OA/0604047
- Huaxin Lin, Approximate homotopy of homomorphisms from $C(X)$ into a simple $C^*$-algebra, Mem. Amer. Math. Soc. 205 (2010), no. 963, vi+131. MR 2643313, DOI 10.1090/S0065-9266-09-00611-5
- Huaxin Lin, AF-embedding of crossed products of AH-algebras by $\Bbb Z$ and asymptotic AF-embedding, Indiana Univ. Math. J. 57 (2008), no. 2, 891–944. MR 2414337, DOI 10.1512/iumj.2008.57.3189
- Huaxin Lin, Asymptotically unitary equivalence and asymptotically inner automorphisms, Amer. J. Math. 131 (2009), no. 6, 1589–1677. MR 2567503, DOI 10.1353/ajm.0.0086
- Huaxin Lin, AF-embeddings of the crossed products of AH-algebras by finitely generated abelian groups, Int. Math. Res. Pap. IMRP 3 (2008), Art. ID rpn007, 67. MR 2457848
- H. Lin, Localizing the Elliott Conjecture at Strongly Self-absorbing $C^*$-algebras, II, – an appendix, preprint, arXiv:math/OA/0709.1654.
- Huaxin Lin, Homotopy of unitaries in simple $C^\ast$-algebras with tracial rank one, J. Funct. Anal. 258 (2010), no. 6, 1822–1882. MR 2578457, DOI 10.1016/j.jfa.2009.11.020
- H. Lin, Asymptotically unitary equivalence and classification of simple amenable C*-algebras, preprint, arXiv:0806.0636
- Huaxin Lin and Hiroki Matui, Minimal dynamical systems and approximate conjugacy, Math. Ann. 332 (2005), no. 4, 795–822. MR 2179778, DOI 10.1007/s00208-005-0654-2
- Huaxin Lin and Hiroki Matui, Minimal dynamical systems on the product of the Cantor set and the circle, Comm. Math. Phys. 257 (2005), no. 2, 425–471. MR 2164605, DOI 10.1007/s00220-005-1298-5
- Huaxin Lin and Hiroki Matui, Minimal dynamical systems on the product of the Cantor set and the circle. II, Selecta Math. (N.S.) 12 (2006), no. 2, 199–239. MR 2281263, DOI 10.1007/s00029-006-0025-1
- Terry A. Loring, $K$-theory and asymptotically commuting matrices, Canad. J. Math. 40 (1988), no. 1, 197–216. MR 928219, DOI 10.4153/CJM-1988-008-9
- Terry A. Loring, The noncommutative topology of one-dimensional spaces, Pacific J. Math. 136 (1989), no. 1, 145–158. MR 971940
- Matui Hiroki, AF embeddability of crossed products of AT algebras by the integers and its application, J. Funct. Anal. 192 (2002), no. 2, 562–580. MR 1923414, DOI 10.1006/jfan.2001.3911
- N. Christopher Phillips, Reduction of exponential rank in direct limits of $C^*$-algebras, Canad. J. Math. 46 (1994), no. 4, 818–853. MR 1289063, DOI 10.4153/CJM-1994-047-7
- Mihai V. Pimsner, Embedding some transformation group $C^{\ast }$-algebras into AF-algebras, Ergodic Theory Dynam. Systems 3 (1983), no. 4, 613–626. MR 753927, DOI 10.1017/S0143385700002182
- Mikael Rørdam, On the structure of simple $C^*$-algebras tensored with a UHF-algebra. II, J. Funct. Anal. 107 (1992), no. 2, 255–269. MR 1172023, DOI 10.1016/0022-1236(92)90106-S
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Andrew S. Toms, On the classification problem for nuclear $C^\ast$-algebras, Ann. of Math. (2) 167 (2008), no. 3, 1029–1044. MR 2415391, DOI 10.4007/annals.2008.167.1029
- Jesper Villadsen, The range of the Elliott invariant of the simple AH-algebras with slow dimension growth, $K$-Theory 15 (1998), no. 1, 1–12. MR 1643615, DOI 10.1023/A:1007789028440
- Dan Voiculescu, Asymptotically commuting finite rank unitary operators without commuting approximants, Acta Sci. Math. (Szeged) 45 (1983), no. 1-4, 429–431. MR 708811
- Dan Voiculescu, Almost inductive limit automorphisms and embeddings into AF-algebras, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 475–484. MR 863206, DOI 10.1017/S0143385700003618
- Dan Voiculescu, A note on quasi-diagonal $C^*$-algebras and homotopy, Duke Math. J. 62 (1991), no. 2, 267–271. MR 1104525, DOI 10.1215/S0012-7094-91-06211-3
- Dan Voiculescu, Around quasidiagonal operators, Integral Equations Operator Theory 17 (1993), no. 1, 137–149. MR 1220578, DOI 10.1007/BF01322551
- W. Winter, Localizing the Elliott Conjecture at Strongly Self-absorbing $C^*$-algebras, preprint, arXiv: math.OA/0708.0283v3.
- Shuang Zhang, $K_1$-groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), no. 2, 793–818. MR 998130, DOI 10.1090/S0002-9947-1991-0998130-8
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai, People’s Republic of China – and – Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: hlin@uoregon.edu
- Received by editor(s): February 12, 2008
- Received by editor(s) in revised form: June 3, 2010
- Published electronically: December 2, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 2021-2086
- MSC (2010): Primary 46L35
- DOI: https://doi.org/10.1090/S0002-9947-2011-05431-0
- MathSciNet review: 2869198