Fold maps, framed immersions and smooth structures
HTML articles powered by AMS MathViewer
- by R. Sadykov
- Trans. Amer. Math. Soc. 364 (2012), 2193-2212
- DOI: https://doi.org/10.1090/S0002-9947-2011-05485-1
- Published electronically: November 10, 2011
- PDF | Request permission
Abstract:
For each integer $q\ge 0$, there is a cohomology theory $\mathbf {A}_1$ such that the zero cohomology group $\mathbf {A}_1^0(N)$ of a manifold $N$ of dimension $n$ is a certain group of cobordism classes of proper fold maps of manifolds of dimension $n+q$ into $N$. We prove a splitting theorem for the spectrum representing the cohomology theory of fold maps. For even $q$, the splitting theorem implies that the cobordism group of fold maps to a manifold $N$ is a sum of $q/2$ cobordism groups of framed immersions to $N$ and a group related to diffeomorphism groups of manifolds of dimension $q+1$. Similarly, in the case of odd $q$, the cobordism group of fold maps splits off $(q-1)/2$ cobordism groups of framed immersions.
The proof of the splitting theorem gives a partial splitting of the homotopy cofiber sequence of Thom spectra in the Madsen-Weiss approach to diffeomorphism groups of manifolds.
References
- Yoshifumi Ando, Invariants of fold-maps via stable homotopy groups, Publ. Res. Inst. Math. Sci. 38 (2002), no. 2, 397–450. MR 1903746
- Yoshifumi Ando, Cobordisms of maps with singularities of given class, Algebr. Geom. Topol. 8 (2008), no. 4, 1989–2029. MR 2449006, DOI 10.2140/agt.2008.8.1989
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57. MR 231390
- J. Eliashberg, Cobordisme des solutions de relations différentielles, South Rhone seminar on geometry, I (Lyon, 1983) Travaux en Cours, Hermann, Paris, 1984, pp. 17–31 (French). MR 753850
- Yakov Eliashberg, Søren Galatius, and Nikolai Mishachev, Madsen-Weiss for geometrically minded topologists, Geom. Topol. 15 (2011), no. 1, 411–472. MR 2776850, DOI 10.2140/gt.2011.15.411
- Y. Eliashberg and N. M. Mishachev, Wrinkling of smooth mappings. III. Foliations of codimension greater than one, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 321–350. MR 1659446, DOI 10.12775/TMNA.1998.021
- László M. Fehér and Richárd Rimányi, Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and complex singularities, Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 69–93. MR 2087805, DOI 10.1090/conm/354/06475
- D. B. Fuks, Quillenization and bordism, Funkcional. Anal. i Priložen. 8 (1974), no. 1, 36–42 (Russian). MR 0343301
- Søren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009), no. 2, 195–239. MR 2506750, DOI 10.1007/s11511-009-0036-9
- Klaus Jänich, Symmetry properties of singularities of $C^{\infty }$-functions, Math. Ann. 238 (1978), no. 2, 147–156. MR 512820, DOI 10.1007/BF01424772
- Kiyoshi Igusa, The stability theorem for smooth pseudoisotopies, $K$-Theory 2 (1988), no. 1-2, vi+355. MR 972368, DOI 10.1007/BF00533643
- Boldizsár Kalmár, Fold maps and immersions from the viewpoint of cobordism, Pacific J. Math. 239 (2009), no. 2, 317–342. MR 2457231, DOI 10.2140/pjm.2009.239.317
- Boldizsár Kalmár, Cobordism invariants of fold maps, Real and complex singularities, Contemp. Math., vol. 459, Amer. Math. Soc., Providence, RI, 2008, pp. 103–115. MR 2444396, DOI 10.1090/conm/459/08965
- B. Kalmar, Cobordism of fold maps, stably framed manifolds and immersions, arXiv:0803.1666v1.
- Maxim Kazarian, Classifying spaces of singularities and Thom polynomials, New developments in singularity theory (Cambridge, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 117–134. MR 1849306
- Ulrich Koschorke, Vector fields and other vector bundle morphisms—a singularity approach, Lecture Notes in Mathematics, vol. 847, Springer, Berlin, 1981. MR 611333
- Shigeki Kikuchi and Osamu Saeki, Remarks on the topology of folds, Proc. Amer. Math. Soc. 123 (1995), no. 3, 905–908. MR 1283556, DOI 10.1090/S0002-9939-1995-1283556-7
- Ib Madsen and Michael Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. of Math. (2) 165 (2007), no. 3, 843–941. MR 2335797, DOI 10.4007/annals.2007.165.843
- Toru Ohmoto, Osamu Saeki, and Kazuhiro Sakuma, Self-intersection class for singularities and its application to fold maps, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3825–3838. MR 1990176, DOI 10.1090/S0002-9947-03-03345-2
- R. Rimányi and A. Szücs, Pontrjagin-Thom-type construction for maps with singularities, Topology 37 (1998), no. 6, 1177–1191. MR 1632908, DOI 10.1016/S0040-9383(97)00093-1
- R. Sadykov, Fold maps, framed immersions and smooth structures, preprint, arXiv:0803.3780.
- Rustam Sadykov, Bordism groups of special generic mappings, Proc. Amer. Math. Soc. 133 (2005), no. 3, 931–936. MR 2113946, DOI 10.1090/S0002-9939-04-07586-0
- Rustam Sadykov, Bordism groups of solutions to differential relations, Algebr. Geom. Topol. 9 (2009), no. 4, 2311–2347. MR 2558312, DOI 10.2140/agt.2009.9.2311
- R. Sadykov, Invariants of singular sets, preprint, arXiv:1004.0460.
- R. Sadykov, The bordism version of the $h$-principle, preprint, arXiv:1002.1650.
- Rustam Sadykov, Osamu Saeki, and Kazuhiro Sakuma, Obstructions to the existence of fold maps, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 338–354. MR 2602999, DOI 10.1112/jlms/jdp072
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- Osamu Saeki and Kazuhiro Sakuma, On special generic maps into $\textbf {R}^3$, Pacific J. Math. 184 (1998), no. 1, 175–193. MR 1626540, DOI 10.2140/pjm.1998.184.175
- Osamu Saeki and Takahiro Yamamoto, Singular fibers and characteristic classes, Topology Appl. 155 (2007), no. 2, 112–120. MR 2368204, DOI 10.1016/j.topol.2007.09.002
- Osamu Saeki, Cobordism groups of special generic functions and groups of homotopy spheres, Japan. J. Math. (N.S.) 28 (2002), no. 2, 287–297. MR 1947905, DOI 10.4099/math1924.28.287
- András Szűcs, Elimination of singularities by cobordism, Real and complex singularities, Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 301–324. MR 2088057, DOI 10.1090/conm/354/06487
- András Szűcs, Cobordism of singular maps, Geom. Topol. 12 (2008), no. 4, 2379–2452. MR 2443969, DOI 10.2140/gt.2008.12.2379
- V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb. MR 1168473, DOI 10.1090/mmono/098
- C. T. C. Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980), no. 5, 347–354. MR 587705, DOI 10.1112/blms/12.5.347
- Robert Wells, Cobordism groups of immersions, Topology 5 (1966), 281–294. MR 196760, DOI 10.1016/0040-9383(66)90011-5
Bibliographic Information
- R. Sadykov
- Affiliation: Departamento de Matemáticas, CINVESTAV-IPN, A.P. 14-740, C.P. 07000, México, D.F., México
- MR Author ID: 687348
- Email: rstsdk@gmail.com
- Received by editor(s): February 16, 2010
- Received by editor(s) in revised form: June 21, 2010, and October 8, 2010
- Published electronically: November 10, 2011
- Additional Notes: The author was supported by the FY2005 Postdoctoral Fellowship for Foreign Researchers of the Japan Society for the Promotion of Science and by a Postdoctoral Fellowship of the Max Planck Institute, Germany
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 2193-2212
- MSC (2010): Primary 57R45; Secondary 55N22
- DOI: https://doi.org/10.1090/S0002-9947-2011-05485-1
- MathSciNet review: 2869203