The complex crown for homogeneous harmonic spaces
HTML articles powered by AMS MathViewer
- by Roberto Camporesi and Bernhard Krötz
- Trans. Amer. Math. Soc. 364 (2012), 2227-2240
- DOI: https://doi.org/10.1090/S0002-9947-2011-05571-6
- Published electronically: December 1, 2011
- PDF | Request permission
Abstract:
The complex crown of a noncompact Riemannian symmetric space $X=G/K$ is generalized to the case of homogeneous harmonic spaces $S=NA$. We prove that every eigenfunction of the Laplace-Beltrami operator on $S$ extends holomorphically to the crown, and that the crown is the maximal $S$-invariant domain in $S_{\mathbb {C}}$ with this property.References
- Jean-Philippe Anker, Ewa Damek, and Chokri Yacoub, Spherical analysis on harmonic $AN$ groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 4, 643–679 (1997). MR 1469569
- Michael Cowling, Anthony H. Dooley, Adam Korányi, and Fulvio Ricci, $H$-type groups and Iwasawa decompositions, Adv. Math. 87 (1991), no. 1, 1–41. MR 1102963, DOI 10.1016/0001-8708(91)90060-K
- Michael Cowling, Anthony Dooley, Adam Korányi, and Fulvio Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal. 8 (1998), no. 2, 199–237. MR 1705176, DOI 10.1007/BF02921641
- Ewa Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. 53 (1987), no. 2, 239–247. MR 924068, DOI 10.4064/cm-53-2-239-247
- Ewa Damek and Fulvio Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 139–142. MR 1142682, DOI 10.1090/S0273-0979-1992-00293-8
- Ewa Damek and Fulvio Ricci, Harmonic analysis on solvable extensions of $H$-type groups, J. Geom. Anal. 2 (1992), no. 3, 213–248. MR 1164603, DOI 10.1007/BF02921294
- J. Heber, On harmonic and asymptotically harmonic homogeneous spaces, Geom. Funct. Anal. 16 (2006), no. 4, 869–890. MR 2255384, DOI 10.1007/s00039-006-0569-4
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Aroldo Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), no. 1, 147–153. MR 554324, DOI 10.1090/S0002-9947-1980-0554324-X
- Bernhard Krötz and Eric Opdam, Analysis on the crown domain, Geom. Funct. Anal. 18 (2008), no. 4, 1326–1421. MR 2465692, DOI 10.1007/s00039-008-0684-5
- Bernhard Krötz and Henrik Schlichtkrull, Holomorphic extension of eigenfunctions, Math. Ann. 345 (2009), no. 4, 835–841. MR 2545868, DOI 10.1007/s00208-009-0379-8
- Bernhard Krötz, Gestur Ólafsson, and Robert J. Stanton, The image of the heat kernel transform on Riemannian symmetric spaces of the noncompact type, Int. Math. Res. Not. 22 (2005), 1307–1329. MR 2152539, DOI 10.1155/IMRN.2005.1307
- B. Krötz and R. J. Stanton, Holomorphic extensions of representations. II. Geometry and harmonic analysis, Geom. Funct. Anal. 15 (2005), no. 1, 190–245. MR 2140631, DOI 10.1007/s00039-005-0504-0
- François Rouvière, Espaces de Damek-Ricci, géométrie et analyse, Analyse sur les groupes de Lie et théorie des représentations (Kénitra, 1999) Sémin. Congr., vol. 7, Soc. Math. France, Paris, 2003, pp. 45–100 (French, with English and French summaries). MR 2038648
Bibliographic Information
- Roberto Camporesi
- Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Email: camporesi@polito.it
- Bernhard Krötz
- Affiliation: Institut für Analysis, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Email: kroetz@math.uni-hannover.de
- Received by editor(s): April 22, 2010
- Received by editor(s) in revised form: August 17, 2010, December 14, 2010, February 1, 2011, and February 15, 2011
- Published electronically: December 1, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 2227-2240
- MSC (2010): Primary 22E25, 22E46, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-2011-05571-6
- MathSciNet review: 2869205