Golden tilings
Authors:
A. A. Pinto, J. P. Almeida and A. Portela
Journal:
Trans. Amer. Math. Soc. 364 (2012), 2261-2280
MSC (2000):
Primary 37C15; Secondary 37C40
DOI:
https://doi.org/10.1090/S0002-9947-2011-05293-1
Published electronically:
December 16, 2011
MathSciNet review:
2888206
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce the notion of golden tilings, and we prove a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, (ii) affine classes of golden tilings and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.
- 1. D. V. Anosov, Tangential fields of transversal foliations in 𝑈-systems, Mat. Zametki 2 (1967), 539–548 (Russian). MR 242190
- 2. Tim Bedford and Albert M. Fisher, Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 531–564. MR 1452179, https://doi.org/10.1017/S0143385797079194
- 3. Elise E. Cawley, The Teichmüller space of an Anosov diffeomorphism of 𝑇², Invent. Math. 112 (1993), no. 2, 351–376. MR 1213107, https://doi.org/10.1007/BF01232439
- 4. Coullet, P. and Tresser, C., Itération d'endomorphismes et groupe de renormalisation, J. de Physique, C5, 25 (1978).
- 5. Mitchell J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys. 21 (1979), no. 6, 669–706. MR 555919, https://doi.org/10.1007/BF01107909
- 6. Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, https://doi.org/10.1007/BF01020332
- 7. Jacobson, M.V., Swiatek, G., Quasisymmetric conjugacies between unimodal maps. I. Induced expansion and invariant measures. Stony Brook preprint (1991).
- 8. Yun Ping Jiang, Asymptotic differentiable structure on Cantor set, Comm. Math. Phys. 155 (1993), no. 3, 503–509. MR 1231640
- 9. Yunping Jiang, Renormalization and geometry in one-dimensional and complex dynamics, Advanced Series in Nonlinear Dynamics, vol. 10, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1442953
- 10. Yunping Jiang, Smooth classification of geometrically finite one-dimensional maps, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2391–2412. MR 1321579, https://doi.org/10.1090/S0002-9947-96-01487-0
- 11. Yunping Jiang, On rigidity of one-dimensional maps, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 319–341. MR 1476995, https://doi.org/10.1090/conm/211/02828
- 12. Yunping Jiang, Metric invariants in dynamical systems, J. Dynam. Differential Equations 17 (2005), no. 1, 51–71. MR 2157840, https://doi.org/10.1007/s10884-005-5403-4
- 13. Jiang, Y., Teichmüller Structures and Dual Geometric Gibbs Type Measure Theory for Continuous Potentials, preprint (2008).
- 14. G. Cui, F. P. Gardiner, and Y. Jiang, Scaling functions for degree 2 circle endomorphisms, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 147–163. MR 2145061, https://doi.org/10.1090/conm/355/06450
- 15. Guizhen Cui, Yunping Jiang, and Anthony Quas, Scaling functions, Gibbs measures, and Teichmüller spaces of circle endomorphisms, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 535–552. MR 1696328, https://doi.org/10.3934/dcds.1999.5.535
- 16. Oscar E. Lanford III, Renormalization group methods for critical circle mappings with general rotation number, VIIIth international congress on mathematical physics (Marseille, 1986) World Sci. Publishing, Singapore, 1987, pp. 532–536. MR 915597
- 17. Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254
- 18. Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171
- 19. Pinto, A. A. and Rand, D. A., Renormalization gives all surface Anosov diffeomorphisms with a smooth invariant measure, submitted.
- 20. Alberto A. Pinto and David A. Rand, Solenoid functions for hyperbolic sets on surfaces, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 145–178. MR 2369446, https://doi.org/10.1017/CBO9780511755187.007
- 21. Pinto, A. A. and Rand, D. A., Geometric measures for hyperbolic sets on surfaces. Stony Brook preprint, (2006).
- 22. A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces, J. London Math. Soc. (2) 71 (2005), no. 2, 481–502. MR 2122440, https://doi.org/10.1112/S0024610704006052
- 23. A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics, Bull. London Math. Soc. 34 (2002), no. 3, 341–352. MR 1887706, https://doi.org/10.1112/S0024609301008670
- 24. A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1905–1931. MR 1944410, https://doi.org/10.1017/S0143385702000792
- 25. A. A. Pinto and D. A. Rand, Classifying 𝐶¹⁺ structures on dynamical fractals. I. The moduli space of solenoid functions for Markov maps on train tracks, Ergodic Theory Dynam. Systems 15 (1995), no. 4, 697–734. MR 1346397, https://doi.org/10.1017/S0143385700008622
- 26. Alberto A. Pinto, David A. Rand, and Flávio Ferreira, Fine structures of hyperbolic diffeomorphisms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009. With a preface by Jacob Palis and Enrique R. Pujals. MR 2464147
- 27. A. A. Pinto, D. A. Rand, and F. Ferreira, Cantor exchange systems and renormalization, J. Differential Equations 243 (2007), no. 2, 593–616. MR 2371802, https://doi.org/10.1016/j.jde.2007.09.014
- 28. A. A. Pinto and D. Sullivan, The circle and the solenoid, Discrete Contin. Dyn. Syst. 16 (2006), no. 2, 463–504. MR 2226493, https://doi.org/10.3934/dcds.2006.16.463
- 29. D. A. Rand, Global phase space universality, smooth conjugacies and renormalisation. I. The 𝐶^{1+𝛼} case, Nonlinearity 1 (1988), no. 1, 181–202. MR 928952
- 30. Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255
- 31. Dennis Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 15–23. MR 974329, https://doi.org/10.1090/pspum/048/974329
- 32. William A. Veech, Projective Swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progr. Math., vol. 10, Birkhäuser, Boston, Mass., 1981, pp. 113–193. MR 633764
- 33. R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37C15, 37C40
Retrieve articles in all journals with MSC (2000): 37C15, 37C40
Additional Information
A. A. Pinto
Affiliation:
Departamento de Matemática e LIAAD-INESC Porto LA, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
Email:
aapinto@fc.up.pt
J. P. Almeida
Affiliation:
Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Ap. 1134, 5301-854 Bragança, Portugal
Email:
jpa@ipb.pt
A. Portela
Affiliation:
Instituto de Matemática, Facultad de Ingenieria, CC30, CP 11300, Universidad de la Republica, Montevideo, Uruguay
Email:
aldo@fing.edu.uy
DOI:
https://doi.org/10.1090/S0002-9947-2011-05293-1
Keywords:
Anosov diffeomorphisms,
circle diffeomorphisms,
dynamics,
renormalization,
solenoid functions,
tilings
Received by editor(s):
February 21, 2008
Received by editor(s) in revised form:
January 5, 2010
Published electronically:
December 16, 2011
Article copyright:
© Copyright 2011
American Mathematical Society