Golden tilings
HTML articles powered by AMS MathViewer
- by A. A. Pinto, J. P. Almeida and A. Portela PDF
- Trans. Amer. Math. Soc. 364 (2012), 2261-2280 Request permission
Abstract:
We introduce the notion of golden tilings, and we prove a one-to-one correspondence between (i) smooth conjugacy classes of Anosov diffeomorphisms, with an invariant measure absolutely continuous with respect to the Lebesgue measure, (ii) affine classes of golden tilings and (iii) solenoid functions. The solenoid functions give a parametrization of the infinite dimensional space consisting of the mathematical objects described in the above equivalences.References
- D. V. Anosov, Tangential fields of transversal foliations in ${U}$-systems, Mat. Zametki 2 (1967), 539–548 (Russian). MR 242190
- Tim Bedford and Albert M. Fisher, Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 531–564. MR 1452179, DOI 10.1017/S0143385797079194
- Elise E. Cawley, The Teichmüller space of an Anosov diffeomorphism of $T^2$, Invent. Math. 112 (1993), no. 2, 351–376. MR 1213107, DOI 10.1007/BF01232439
- Coullet, P. and Tresser, C., Itération d’endomorphismes et groupe de renormalisation, J. de Physique, C5, 25 (1978).
- Mitchell J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys. 21 (1979), no. 6, 669–706. MR 555919, DOI 10.1007/BF01107909
- Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978), no. 1, 25–52. MR 501179, DOI 10.1007/BF01020332
- Jacobson, M.V., Swiatek, G., Quasisymmetric conjugacies between unimodal maps. I. Induced expansion and invariant measures. Stony Brook preprint (1991).
- Yun Ping Jiang, Asymptotic differentiable structure on Cantor set, Comm. Math. Phys. 155 (1993), no. 3, 503–509. MR 1231640
- Yunping Jiang, Renormalization and geometry in one-dimensional and complex dynamics, Advanced Series in Nonlinear Dynamics, vol. 10, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1442953, DOI 10.1142/9789814350105
- Yunping Jiang, Smooth classification of geometrically finite one-dimensional maps, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2391–2412. MR 1321579, DOI 10.1090/S0002-9947-96-01487-0
- Yunping Jiang, On rigidity of one-dimensional maps, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 319–341. MR 1476995, DOI 10.1090/conm/211/02828
- Yunping Jiang, Metric invariants in dynamical systems, J. Dynam. Differential Equations 17 (2005), no. 1, 51–71. MR 2157840, DOI 10.1007/s10884-005-5403-4
- Jiang, Y., Teichmüller Structures and Dual Geometric Gibbs Type Measure Theory for Continuous Potentials, preprint (2008).
- G. Cui, F. P. Gardiner, and Y. Jiang, Scaling functions for degree 2 circle endomorphisms, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 147–163. MR 2145061, DOI 10.1090/conm/355/06450
- Guizhen Cui, Yunping Jiang, and Anthony Quas, Scaling functions, Gibbs measures, and Teichmüller spaces of circle endomorphisms, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 535–552. MR 1696328, DOI 10.3934/dcds.1999.5.535
- Oscar E. Lanford III, Renormalization group methods for critical circle mappings with general rotation number, VIIIth international congress on mathematical physics (Marseille, 1986) World Sci. Publishing, Singapore, 1987, pp. 532–536. MR 915597
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Pinto, A. A. and Rand, D. A., Renormalization gives all surface Anosov diffeomorphisms with a smooth invariant measure, submitted.
- Alberto A. Pinto and David A. Rand, Solenoid functions for hyperbolic sets on surfaces, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 145–178. MR 2369446, DOI 10.1017/CBO9780511755187.007
- Pinto, A. A. and Rand, D. A., Geometric measures for hyperbolic sets on surfaces. Stony Brook preprint, (2006).
- A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces, J. London Math. Soc. (2) 71 (2005), no. 2, 481–502. MR 2122440, DOI 10.1112/S0024610704006052
- A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics, Bull. London Math. Soc. 34 (2002), no. 3, 341–352. MR 1887706, DOI 10.1112/S0024609301008670
- A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics, Ergodic Theory Dynam. Systems 22 (2002), no. 6, 1905–1931. MR 1944410, DOI 10.1017/S0143385702000792
- A. A. Pinto and D. A. Rand, Classifying $C^{1+}$ structures on dynamical fractals. I. The moduli space of solenoid functions for Markov maps on train tracks, Ergodic Theory Dynam. Systems 15 (1995), no. 4, 697–734. MR 1346397, DOI 10.1017/S0143385700008622
- Alberto A. Pinto, David A. Rand, and Flávio Ferreira, Fine structures of hyperbolic diffeomorphisms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009. With a preface by Jacob Palis and Enrique R. Pujals. MR 2464147, DOI 10.1007/978-3-540-87525-3
- A. A. Pinto, D. A. Rand, and F. Ferreira, Cantor exchange systems and renormalization, J. Differential Equations 243 (2007), no. 2, 593–616. MR 2371802, DOI 10.1016/j.jde.2007.09.014
- A. A. Pinto and D. Sullivan, The circle and the solenoid, Discrete Contin. Dyn. Syst. 16 (2006), no. 2, 463–504. MR 2226493, DOI 10.3934/dcds.2006.16.463
- D. A. Rand, Global phase space universality, smooth conjugacies and renormalisation. I. The $C^{1+\alpha }$ case, Nonlinearity 1 (1988), no. 1, 181–202. MR 928952
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Dennis Sullivan, Differentiable structures on fractal-like sets, determined by intrinsic scaling functions on dual Cantor sets, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 15–23. MR 974329, DOI 10.1090/pspum/048/974329
- William A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201–242. MR 644019, DOI 10.2307/1971391
- R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169–203. MR 348794
Additional Information
- A. A. Pinto
- Affiliation: Departamento de Matemática e LIAAD-INESC Porto LA, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- MR Author ID: 319558
- Email: aapinto@fc.up.pt
- J. P. Almeida
- Affiliation: Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Ap. 1134, 5301-854 Bragança, Portugal
- Email: jpa@ipb.pt
- A. Portela
- Affiliation: Instituto de Matemática, Facultad de Ingenieria, CC30, CP 11300, Universidad de la Republica, Montevideo, Uruguay
- Email: aldo@fing.edu.uy
- Received by editor(s): February 21, 2008
- Received by editor(s) in revised form: January 5, 2010
- Published electronically: December 16, 2011
- © Copyright 2011 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 2261-2280
- MSC (2000): Primary 37C15; Secondary 37C40
- DOI: https://doi.org/10.1090/S0002-9947-2011-05293-1
- MathSciNet review: 2888206