The sharp threshold for bootstrap percolation in all dimensions
HTML articles powered by AMS MathViewer
- by József Balogh, Béla Bollobás, Hugo Duminil-Copin and Robert Morris
- Trans. Amer. Math. Soc. 364 (2012), 2667-2701
- DOI: https://doi.org/10.1090/S0002-9947-2011-05552-2
- Published electronically: December 7, 2011
- PDF | Request permission
Abstract:
In $r$-neighbour bootstrap percolation on a graph $G$, a (typically random) set $A$ of initially ‘infected’ vertices spreads by infecting (at each time step) vertices with at least $r$ already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the $d$-dimensional grid $[n]^d$. The elements of the set $A$ are usually chosen independently, with some density $p$, and the main question is to determine $p_c([n]^d,r)$, the density at which percolation (infection of the entire vertex set) becomes likely.
In this paper we prove, for every pair $d,r \in \mathbb {N}$ with $d \geqslant r \geqslant 2$, that \[ p_c\big ( [n]^d,r \big ) = \left ( \frac {\lambda (d,r) + o(1)}{\log _{(r-1)} (n)} \right )^{d-r+1}\] as $n \to \infty$, for some constant $\lambda (d,r) > 0$, and thus prove the existence of a sharp threshold for percolation in any (fixed) number of dimensions. We moreover determine $\lambda (d,r)$ for every $d \geqslant r \geqslant 2$.
References
- J. Adler and U. Lev, Bootstrap Percolation: Visualizations and applications, Braz. J. Phys., 33 (2003), 641–644.
- M. Aizenman and J. L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A 21 (1988), no. 19, 3801–3813. MR 968311
- J. Balogh and B. Bollobás, Sharp thresholds in bootstrap percolation, Physica A, 326 (2003), 305–312.
- József Balogh and Béla Bollobás, Bootstrap percolation on the hypercube, Probab. Theory Related Fields 134 (2006), no. 4, 624–648. MR 2214907, DOI 10.1007/s00440-005-0451-6
- József Balogh, Béla Bollobás, and Robert Morris, Majority bootstrap percolation on the hypercube, Combin. Probab. Comput. 18 (2009), no. 1-2, 17–51. MR 2497373, DOI 10.1017/S0963548308009322
- József Balogh, Béla Bollobás, and Robert Morris, Bootstrap percolation in three dimensions, Ann. Probab. 37 (2009), no. 4, 1329–1380. MR 2546747, DOI 10.1214/08-AOP433
- József Balogh, Béla Bollobás, and Robert Morris, Bootstrap percolation in high dimensions, Combin. Probab. Comput. 19 (2010), no. 5-6, 643–692. MR 2726074, DOI 10.1017/S0963548310000271
- József Balogh, Yuval Peres, and Gábor Pete, Bootstrap percolation on infinite trees and non-amenable groups, Combin. Probab. Comput. 15 (2006), no. 5, 715–730. MR 2248323, DOI 10.1017/S0963548306007619
- József Balogh and Boris G. Pittel, Bootstrap percolation on the random regular graph, Random Structures Algorithms 30 (2007), no. 1-2, 257–286. MR 2283230, DOI 10.1002/rsa.20158
- J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, J. Appl. Probab. 22 (1985), no. 3, 556–569. MR 799280, DOI 10.1017/s0021900200029326
- Marek Biskup and Roberto H. Schonmann, Metastable behavior for bootstrap percolation on regular trees, J. Stat. Phys. 136 (2009), no. 4, 667–676. MR 2540158, DOI 10.1007/s10955-009-9798-x
- N.S. Branco, S.L.A. de Queiroz and R.R. Dos Santos, Critical exponents for high density and bootstrap percolation, J. Phys. C, 19 (1986), 1909–1921.
- Raphaël Cerf and Emilio N. M. Cirillo, Finite size scaling in three-dimensional bootstrap percolation, Ann. Probab. 27 (1999), no. 4, 1837–1850. MR 1742890, DOI 10.1214/aop/1022677550
- R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation, Stochastic Process. Appl. 101 (2002), no. 1, 69–82. MR 1921442, DOI 10.1016/S0304-4149(02)00124-2
- R. Cerf and F. Manzo, A $d$-dimensional nucleation and growth model, arXiv:1001.3990.
- J. Chalupa, P. L. Leath and G. R. Reich, Bootstrap percolation on a Bethe latice, J. Phys. C., 12 (1979), L31–L35.
- Paul A. Dreyer Jr. and Fred S. Roberts, Irreversible $k$-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion, Discrete Appl. Math. 157 (2009), no. 7, 1615–1627. MR 2510242, DOI 10.1016/j.dam.2008.09.012
- H. Duminil-Copin and A. Holroyd, Sharp metastability for threshold growth models. In preparation.
- Aernout C. D. van Enter, Proof of Straley’s argument for bootstrap percolation, J. Statist. Phys. 48 (1987), no. 3-4, 943–945. MR 914911, DOI 10.1007/BF01019705
- Paola Flocchini, Elena Lodi, Fabrizio Luccio, Linda Pagli, and Nicola Santoro, Dynamic monopolies in tori, Discrete Appl. Math. 137 (2004), no. 2, 197–212. 1st International Workshop on Algorithms, Combinatorics, and Optimization in Interconnection Networks (IWACOIN ’99). MR 2048030, DOI 10.1016/S0166-218X(03)00261-0
- L. R. G. Fontes and R. H. Schonmann, Bootstrap percolation on homogeneous trees has 2 phase transitions, J. Stat. Phys. 132 (2008), no. 5, 839–861. MR 2430783, DOI 10.1007/s10955-008-9583-2
- L. R. Fontes, R. H. Schonmann, and V. Sidoravicius, Stretched exponential fixation in stochastic Ising models at zero temperature, Comm. Math. Phys. 228 (2002), no. 3, 495–518. MR 1918786, DOI 10.1007/s002200200658
- Ehud Friedgut and Gil Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996), no. 10, 2993–3002. MR 1371123, DOI 10.1090/S0002-9939-96-03732-X
- M. Granovetter, Threshold models of collective behavior, American J. Sociology, 83 (1978), 1420–1443.
- Janko Gravner and David Griffeath, Threshold growth dynamics, Trans. Amer. Math. Soc. 340 (1993), no. 2, 837–870. MR 1147400, DOI 10.1090/S0002-9947-1993-1147400-3
- Janko Gravner and David Griffeath, Cellular automaton growth on $\textbf {Z}^2$: theorems, examples, and problems, Adv. in Appl. Math. 21 (1998), no. 2, 241–304. MR 1634709, DOI 10.1006/aama.1998.0599
- Janko Gravner and Alexander E. Holroyd, Slow convergence in bootstrap percolation, Ann. Appl. Probab. 18 (2008), no. 3, 909–928. MR 2418233, DOI 10.1214/07-AAP473
- Janko Gravner and Alexander E. Holroyd, Local bootstrap percolation, Electron. J. Probab. 14 (2009), no. 14, 385–399. MR 2480546, DOI 10.1214/EJP.v14-607
- J. Gravner, A.E. Holroyd and R. Morris, A sharper threshold for bootstrap percolation in two dimensions, to appear in Prob. Theory Rel. Fields.
- Paolo De Gregorio, Aonghus Lawlor, Phil Bradley, and Kenneth A. Dawson, Exact solution of a jamming transition: closed equations for a bootstrap percolation problem, Proc. Natl. Acad. Sci. USA 102 (2005), no. 16, 5669–5673. MR 2142892, DOI 10.1073/pnas.0408756102
- Alexander E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation, Probab. Theory Related Fields 125 (2003), no. 2, 195–224. MR 1961342, DOI 10.1007/s00440-002-0239-x
- Alexander E. Holroyd, The metastability threshold for modified bootstrap percolation in $d$ dimensions, Electron. J. Probab. 11 (2006), no. 17, 418–433. MR 2223042, DOI 10.1214/EJP.v11-326
- Alexander E. Holroyd, Thomas M. Liggett, and Dan Romik, Integrals, partitions, and cellular automata, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3349–3368. MR 2052953, DOI 10.1090/S0002-9947-03-03417-2
- Svante Janson, On percolation in random graphs with given vertex degrees, Electron. J. Probab. 14 (2009), no. 5, 87–118. MR 2471661, DOI 10.1214/EJP.v14-603
- S. Janson, T. Łuczak, T. Turova and T. Vallier, Bootstrap percolation on the random graph $G_{n,p}$, arXiv:1012.3535.
- M.A. Khan, H. Gould and J. Chalupa, Monte Carlo renormalization group study of bootstrap percolation, J. Phys. C, 18 (1985), L223–L228.
- Robert Morris, Zero-temperature Glauber dynamics on $\Bbb Z^d$, Probab. Theory Related Fields 149 (2011), no. 3-4, 417–434. MR 2776621, DOI 10.1007/s00440-009-0259-x
- J. von Neumann, Theory of Self-Reproducing Automata, Univ. Illinois Press, Urbana, 1966.
- Roberto H. Schonmann, On the behavior of some cellular automata related to bootstrap percolation, Ann. Probab. 20 (1992), no. 1, 174–193. MR 1143417
- S. Ulam, Random processes and transformations, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R.I., 1952, pp. 264–275. MR 0045334
- Duncan J. Watts, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA 99 (2002), no. 9, 5766–5771. MR 1896072, DOI 10.1073/pnas.082090499
Bibliographic Information
- József Balogh
- Affiliation: Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, Illinois 61801 – and – Department of Mathematics, University of California, San Diego, La Jolla, California 92093
- Email: jobal@math.uiuc.edu
- Béla Bollobás
- Affiliation: Department of Mathematics, Trinity College, Cambridge CB2 1TQ, England – and – Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- MR Author ID: 38980
- Email: B.Bollobas@dpmms.cam.ac.uk
- Hugo Duminil-Copin
- Affiliation: Département de Mathématiques, Université de Genève, 2-4 rue du Lièvre, 1211 Genvève, Suisse
- Email: hugo.duminil@unige.ch
- Robert Morris
- Affiliation: IMPA, Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro, RJ, Brasil
- MR Author ID: 777846
- Email: rob@impa.br
- Received by editor(s): October 15, 2010
- Published electronically: December 7, 2011
- Additional Notes: The first author was supported by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grants 09072 and 08086, and OTKA Grant K76099.
The second author was supported by NSF grants CNS-0721983, CCF-0728928 and DMS-0906634, and ARO grant W911NF-06-1-0076.
The third author was supported by ANR grant BLAN-3-134462 and the Swiss NSF
The fourth author was supported by MCT grant PCI EV-8C, ERC Advanced grant DMMCA, and a Research Fellowship from Murray Edwards College, Cambridge - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 2667-2701
- MSC (2010): Primary 60K35, 60C05
- DOI: https://doi.org/10.1090/S0002-9947-2011-05552-2
- MathSciNet review: 2888224