-module structure of local cohomology modules of toric algebras
Author:
Jen-Chieh Hsiao
Journal:
Trans. Amer. Math. Soc. 364 (2012), 2461-2478
MSC (2010):
Primary 13D45, 13N10, 14M25
DOI:
https://doi.org/10.1090/S0002-9947-2012-05372-4
Published electronically:
January 13, 2012
MathSciNet review:
2888215
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a toric algebra over a field
of characteristic 0 and let
be a monomial ideal of
. We show that the local cohomology modules
are of finite length over the ring of differential operators
, generalizing the classical case of a polynomial algebra
. As an application, we compute the characteristic cycles of some local cohomology modules.
- [ÁM00] Josep Alvarez Montaner, Characteristic cycles of local cohomology modules of monomial ideals, J. Pure Appl. Algebra 150 (2000), no. 1, 1–25. MR 1762917, https://doi.org/10.1016/S0022-4049(98)00171-6
- [ÁM04] Josep Àlvarez Montaner, Characteristic cycles of local cohomology modules of monomial ideals. II, J. Pure Appl. Algebra 192 (2004), no. 1-3, 1–20. MR 2067186, https://doi.org/10.1016/j.jpaa.2004.01.003
- [ÁMBL05] Josep Alvarez-Montaner, Manuel Blickle, and Gennady Lyubeznik, Generators of 𝐷-modules in positive characteristic, Math. Res. Lett. 12 (2005), no. 4, 459–473. MR 2155224, https://doi.org/10.4310/MRL.2005.v12.n4.a2
- [Bjö79] J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- [Bøg95] Rikard Bøgvad, Some results on 𝒟-modules on Borel varieties in characteristic 𝓅>0, J. Algebra 173 (1995), no. 3, 638–667. MR 1327873, https://doi.org/10.1006/jabr.1995.1107
- [Bøg02] Rikard Bögvad, An analogue of holonomic 𝒟-modules on smooth varieties in positive characteristics, Homology Homotopy Appl. 4 (2002), no. 2, 83–116. The Roos Festschrift volume, 1. MR 1918185, https://doi.org/10.4310/hha.2002.v4.n2.a5
- [BS98] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627
- [BW99] Yuri Berest and George Wilson, Classification of rings of differential operators on affine curves, Internat. Math. Res. Notices 2 (1999), 105–109. MR 1670188, https://doi.org/10.1155/S1073792899000057
- [Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- [Gin86] V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), no. 2, 327–402. MR 833194, https://doi.org/10.1007/BF01388811
- [Har70] Robin Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/70), 145–164. MR 257096, https://doi.org/10.1007/BF01404554
- [HM03] David Helm and Ezra Miller, Bass numbers of semigroup-graded local cohomology, Pacific J. Math. 209 (2003), no. 1, 41–66. MR 1973933, https://doi.org/10.2140/pjm.2003.209.41
- [HM05] David Helm and Ezra Miller, Algorithms for graded injective resolutions and local cohomology over semigroup rings, J. Symbolic Comput. 39 (2005), no. 3-4, 373–395. MR 2168288, https://doi.org/10.1016/j.jsc.2004.11.009
- [HS93] Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765–779. MR 1124167, https://doi.org/10.1090/S0002-9947-1993-1124167-6
- [ILL+07] Srikanth B. Iyengar, Graham J. Leuschke, Anton Leykin, Claudia Miller, Ezra Miller, Anurag K. Singh, and Uli Walther, Twenty-four hours of local cohomology, Graduate Studies in Mathematics, vol. 87, American Mathematical Society, Providence, RI, 2007. MR 2355715
- [Ish88] Masa-Nori Ishida, The local cohomology groups of an affine semigroup ring, Algebraic geometry and commutative algebra, vol. I, Kinokuniya, Tokyo, 1988, pp. 141-153.
- [Jon94] A. G. Jones, Rings of differential operators on toric varieties, Proc. Edinburgh Math. Soc. (2) 37 (1994), no. 1, 143–160. MR 1258039, https://doi.org/10.1017/S0013091500018770
- [Lyu93] Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of 𝐷-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55. MR 1223223, https://doi.org/10.1007/BF01244301
- [Lyu97] Gennady Lyubeznik, 𝐹-modules: applications to local cohomology and 𝐷-modules in characteristic 𝑝>0, J. Reine Angew. Math. 491 (1997), 65–130. MR 1476089, https://doi.org/10.1515/crll.1997.491.65
- [Lyu00] Gennady Lyubeznik, Finiteness properties of local cohomology modules: a characteristic-free approach, J. Pure Appl. Algebra 151 (2000), no. 1, 43–50. MR 1770642, https://doi.org/10.1016/S0022-4049(99)00080-8
- [MM06] Laura Felicia Matusevich and Ezra Miller, Combinatorics of rank jumps in simplicial hypergeometric systems, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1375–1381. MR 2199183, https://doi.org/10.1090/S0002-9939-05-08245-6
- [MS05] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- [Mus87] Ian M. Musson, Rings of differential operators on invariant rings of tori, Trans. Amer. Math. Soc. 303 (1987), no. 2, 805–827. MR 902799, https://doi.org/10.1090/S0002-9947-1987-0902799-2
- [Mus94] Ian M. Musson, Differential operators on toric varieties, J. Pure Appl. Algebra 95 (1994), no. 3, 303–315. MR 1295963, https://doi.org/10.1016/0022-4049(94)90064-7
- [Sai10] Mutsumi Saito, Critical modules of the ring of differential operators of an affine semigroup algebra, Comm. Algebra 38 (2010), no. 2, 618–631. MR 2598902, https://doi.org/10.1080/00927870902828603
- [SS88] S. P. Smith and J. T. Stafford, Differential operators on an affine curve, Proc. London Math. Soc. (3) 56 (1988), no. 2, 229–259. MR 922654, https://doi.org/10.1112/plms/s3-56.2.229
- [SS90] Uwe Schäfer and Peter Schenzel, Dualizing complexes of affine semigroup rings, Trans. Amer. Math. Soc. 322 (1990), no. 2, 561–582. MR 1076179, https://doi.org/10.1090/S0002-9947-1990-1076179-6
- [SS04] Anurag K. Singh and Irena Swanson, Associated primes of local cohomology modules and of Frobenius powers, Int. Math. Res. Not. 33 (2004), 1703–1733. MR 2058025, https://doi.org/10.1155/S1073792804133424
- [ST01] Mutsumi Saito and William N. Traves, Differential algebras on semigroup algebras, Symbolic computation: solving equations in algebra, geometry, and engineering (South Hadley, MA, 2000) Contemp. Math., vol. 286, Amer. Math. Soc., Providence, RI, 2001, pp. 207–226. MR 1874281, https://doi.org/10.1090/conm/286/04764
- [ST04] Mutsumi Saito and William N. Traves, Finite generation of rings of differential operators of semigroup algebras, J. Algebra 278 (2004), no. 1, 76–103. MR 2068067, https://doi.org/10.1016/j.jalgebra.2004.01.009
- [ST09] Mutsumi Saito and Ken Takahashi, Noetherian properties of rings of differential operators of affine semigroup algebras, Osaka J. Math. 46 (2009), no. 2, 529–556. MR 2549600
- [TT08] Shunsuke Takagi and Ryo Takahashi, 𝐷-modules over rings with finite 𝐹-representation type, Math. Res. Lett. 15 (2008), no. 3, 563–581. MR 2407232, https://doi.org/10.4310/MRL.2008.v15.n3.a15
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13D45, 13N10, 14M25
Retrieve articles in all journals with MSC (2010): 13D45, 13N10, 14M25
Additional Information
Jen-Chieh Hsiao
Affiliation:
Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
Email:
jhsiao@math.purdue.edu
DOI:
https://doi.org/10.1090/S0002-9947-2012-05372-4
Received by editor(s):
December 17, 2009
Received by editor(s) in revised form:
April 8, 2010, and April 14, 2010
Published electronically:
January 13, 2012
Additional Notes:
The author was partially supported by the NSF under grants DMS 0555319 and DMS 0901123.
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.