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ON SYMMETRIC PRODUCTS OF CURVES

F. BASTIANELLI

Abstract. Let C be a smooth complex projective curve of genus g and let
C(2) be its second symmetric product. This paper concerns the study of some
attempts at extending to C(2) the notion of gonality. In particular, we prove
that the degree of irrationality of C(2) is at least g − 1 when C is generic
and that the minimum gonality of curves through the generic point of C(2)

equals the gonality of C. In order to produce the main results we deal with
correspondences on the k-fold symmetric product of C, with some interesting
linear subspaces of Pn enjoying a condition of Cayley-Bacharach type, and with
monodromy of rational maps. As an application, we also give new bounds on
the ample cone of C(2) when C is a generic curve of genus 6 ≤ g ≤ 8.

1. Introduction

Let C be a smooth irreducible complex projective curve of genus g ≥ 0. The
gonality of C is the minimum positive integer d such that C admits a covering
f : C −→ P1 of degree d, and we denote it by gon(C). The gonality is an important
invariant of curves, and it has been studied since the nineteenth century. Through-
out we will deal with two attempts at extending the notion of gonality to varieties
of higher dimension. In particular, we treat this topic on the second symmetric
product C(2) of the curve C, which is the smooth surface parametrizing the un-
ordered pairs of points of the curve. We would like to point out that symmetric
products of curves are very concrete projective varieties that are naturally defined
by C. Moreover, they somehow reflect the geometry of the curve and are deeply
involved in the classical theory of curves. So it seems natural and interesting to
study the problem of generalizing the notion of gonality on such varieties.

It is worth noting that to compute the gonality of curves is a quite difficult task.
Indeed, besides examples of morphisms reaching the expected minimum degree, one
has to provide non-existence results for lower degrees. As it shall be clear in the
following, similar remarks shall hold for both the notions we are going to introduce.

The most natural extension of gonality is probably the degree of irrationality.
Initially, it has been introduced in an algebraic context by Moh and Heinzer in
[17], whereas its geometric interpretation has been deeply studied by Yoshihara
[20, 21, 22]. Given an irreducible complex projective variety X of dimension n, the
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2494 F. BASTIANELLI

degree of irrationality of X is defined to be the integer

dr(X) := min

{
d ∈ N

∣∣∣∣ there exists a dominant rational
map F : X ��� Pn of degree d

}
.

Clearly, such a number is a birational invariant, and having dr(X) = 1 is equiv-
alent to rationality. Moreover, since any dominant rational map from a curve to P1

can be resolved to a morphism, the notion of degree of irrationality does provide
an extension of gonality to n-dimensional varieties.

We would like to recall that any dominant rational map C ��� C ′ between curves
leads to the inequality gon(C) ≥ gon(C ′). On the other hand, the existence of a
dominant rational map X ��� Y between varieties of dimension n ≥ 2 does not
work analogously on the degrees of irrationality. Indeed, there are counterexamples
in the case of surfaces (cf. [22, 6]) and there are examples of non-rational threefolds
that are unirational (see for instance [5, 11]).

Turning to consider the second symmetric product C(2) of a smooth complex
projective curve C of genus g, we deal with the problem of computing its de-
gree of irrationality. Clearly, there is a strong connection between the existence
of a dominant rational map F : C(2) ��� P2 and the genus of the curve C. For in-
stance, rational and elliptic curves are such that the degree of irrationality of their
second symmetric product is one and two respectively, whereas we shall see that
dr(C

(2)) ≥ 3 for any curve of genus g ≥ 2.
Furthermore, the degree of irrationality of the second symmetric product seems

to depend on the existence of linear series on the curve as well. Indeed, by using
grd’s on C it is possible to construct rational dominant maps F : C(2) ��� P2 leading
to the following upper bound.

Proposition 1.1. Let C be a smooth complex projective curve. Let δ1 be the
gonality of C, and for m = 2, 3 let δm be the minimum of the integers d such that
C admits a birational mapping onto a non-degenerate curve of degree d in Pm.
Then

dr(C
(2)) ≤ min

{
δ21 ,

δ2(δ2 − 1)

2
,
(δ3 − 1)(δ3 − 2)

2
− g

}
.

In the case of hyperelliptic curves of high genera the latter bound turns out to
be an equality. Namely,

Theorem 1.2. Let C be a smooth complex projective curve of genus g ≥ 2 and
assume that C is hyperelliptic. Then:

(i) 3 ≤ dr(C
(2)) ≤ 4 when either g = 2 or g = 3;

(ii) dr(C
(2)) = 4 for any g ≥ 4.

On the other hand, when the curve is assumed to be non-hyperelliptic, the
situation is more subtle and it is no longer true that the degree of irrationality of
C(2) equals the square of the gonality of C for high enough genus. The main result
we prove on generic curves is the following.

Theorem 1.3. Let C be a smooth complex projective curve of genus g ≥ 4 and
assume that C is very general in the moduli space Mg. Then dr(C

(2)) ≥ g − 1.

Without any assumption of generality on C, the latter inequality does not hold,
but it is still possible to provide some estimations on the degree of irrationality
of second symmetric products of non-hyperelliptic curves. The following result
summarizes the lower bounds we achieve, and we list them by genus.
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Theorem 1.4. Let C be a smooth complex projective curve of genus g ≥ 3 and
assume that C is non-hyperelliptic. Then the following hold:

(i) if g = 3, 4, then dr(C
(2)) ≥ 3;

(ii) if g = 5, then dr(C
(2)) ≥ 4;

(iii) if g = 6, then dr(C
(2)) ≥ 5;

(iv) if g ≥ 7, then dr(C
(2)) ≥ max { 6, gon(C) }.

Another attempt to extend the notion of gonality to n-dimensional varieties is
the following. Given an irreducible complex projective variety X, we define the
number

do(X) := min

⎧⎨
⎩d ∈ N

∣∣∣∣∣∣
there exists a family E = {Et}t∈T

covering X whose generic member is
an irreducible d-gonal curve

⎫⎬
⎭

and we may call it the degree of gonality of X. Hence do(X) is the minimum
gonality of curves passing through the generic point of X. Notice that the generic

member Et is a possibly singular d-gonal curve, i.e. its normalization Ẽt admits a

degree d covering ft : Ẽt −→ P1. The degree of gonality is a birational invariant,
and do(X) = 1 if and only if X is an uniruled variety. Moreover, do(C) = gon(C)
for any complex projective curve C.

Although this second extension of the notion of gonality appears less intuitive
and more artificial than the degree of irrationality, the degree of gonality has a nice
behavior with respect to dominance. Namely, if there exists a dominant rational
map X ��� Y between two irreducible complex projective varieties of dimension n,
then do(X) ≥ do(Y ) as in the one-dimensional case.

Dealing with the problem of computing the degree of gonality of the second
symmetric product C(2) of a smooth complex projective curve C, it is easy to check
that do(C

(2)) = 1 when the curve is either rational or elliptic and that do(C
(2)) = 2

for any curve of genus two. Moreover, we prove the following.

Theorem 1.5. Let C be a smooth complex projective curve of genus g ≥ 3. For a
positive integer d, let E = {Et}t∈T be a family of curves on C(2) parametrized over
a smooth variety T such that the generic fiber Et is an irreducible d-gonal curve,
and for any point P ∈ C(2) there exists t ∈ T such that P ∈ Et. Then d ≥ gon(C).
Moreover, under the further assumption that g ≥ 6 and Aut(C) = {IdC}, we have
that equality holds if and only if Et is isomorphic to C.

In particular, we have do(C
(2)) ≥ gon(C). Furthermore, for any smooth curve

C, its second symmetric product is covered by a family of copies of C. Hence
do(C

(2)) ≤ gon(C), and the problem of computing the degree of gonality of second
symmetric products of curves is now totally understood.

Theorem 1.6. Let C be a smooth complex projective curve of genus g ≥ 3. Then
do(C

(2)) = gon(C).

At the end of this paper, we present further an application of Theorem 1.5
improving the bounds of [3] on the nef cone of the second symmetric product
of a generic curve C of genus g. We would like to recall that the problem of
describing the nef cone Nef(C(2))R in the Néron-Severi space N1(C(2))R is reduced
to estimate the slope τ (C) of one of the rays bounding the two-dimensional convex
cone Nef(C(2))R.
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In [3, Theorem 1] are provided some bounds on τ (C) when the genus of C is
5 ≤ g ≤ 8. The proof of such a result follows the argument of [19, Section 4] - which
is based both on the main theorem of the latter paper and on the techniques intro-
duced in [7] - and involves the gonality of moving curves on the second symmetric
products.

By following the very same argument and by applying Theorem 1.5 to this set-
ting, we achieve new bounds on the nef cone of C(2) when C has genus 6 ≤ g ≤ 8.
Namely,

Theorem 1.7. Consider the rational numbers

τ6 =
32

13
, τ7 =

77

29
and τ8 =

17

6
.

Let C be a smooth complex projective curve of genus 6 ≤ g ≤ 8 and assume that C
is very general in the moduli space Mg. Then τ (C) ≤ τg.

In order to prove most of our results, the main technique is to use holomorphic
differentials, following Mumford’s method of induced differentials (cf. [18, Section
2]). In the spirit of [14], we rephrase our settings in terms of correspondences on
the product Y × C(2), where Y is an appropriate ruled surface. A general 0-cycle
of such a correspondence Γ ⊂ Y × C(2) is a Cayley-Bacharach scheme with respect
to the canonical linear series |KC(2) |. That is, any holomorphic 2-form vanishing on
all but one of the points of the 0-cycle vanishes in the remaining point as well. The
latter property imposes strong conditions on the correspondence Γ, and the crucial
point is to study the restrictions descending to the second symmetric product and
then to the curve C.

Another important technique involved in the proofs is monodromy. In partic-
ular, we consider the generically finite dominant map π1 : Γ −→ Y projecting a
correspondence Γ on the first factor, and we study the action of the monodromy
group of π1 on the generic fiber. Finally, an important role is played by Abel’s
theorem and some basic facts of Brill-Noether theory.

The plan of the paper is the following. Section 2 concerns preliminaries on
symmetric products of curves and monodromy, whereas in Section 4 we develop
the main techniques to manage our problems. In particular, given a smooth curve
C of genus g and its k-fold symmetric product, with 2 ≤ k ≤ g − 1, we investigate
how the existence of a correspondence on C(k) influences the geometry of the curve
itself (see Theorem 4.3 and Corollary 4.4).

Dealing with this issue, we come across linear subspaces of Pn satisfying a con-
dition of Cayley-Bacharach type. We spend the entire Section 3 analyzing them.
They turn out to enjoy interesting properties, both on the dimension of their linear
span and on their configuration in the projective space (cf. Theorem 3.3).

Section 5 and Section 6 are devoted to studying the degree of gonality and the
degree of irrationality, respectively.

Finally, in the last section we deal with the ample cone on second symmetric
products of curves and we prove Theorem 1.7.

Notation. We shall work throughout over the field C of complex numbers. Given
a variety X, we say that a property holds for a general point x ∈ X if it holds on
an open non-empty subset of X. Moreover, we say that x ∈ X is a very general
- or generic - point if there exists a countable collection of proper subvarieties of X
such that x is not contained in the union of those subvarieties. By curve we mean
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a complete reduced algebraic curve over the field of complex numbers. When we
speak of a smooth curve, we always implicitly assume it to be irreducible.

2. Preliminaries

2.1. Definition and first properties. Let C be a smooth complex projective
curve of genus g ≥ 0. For an integer k ≥ 1, let Ck := C × . . .× C denote its k-fold
ordinary product and let Sk be the k-th symmetric group. We define the k-fold
symmetric product of C as the quotient

C(k) :=
Ck

Sk

under the action of Sk permuting the factors of Ck. Hence the quotient map
π : Ck −→ C(k) sending (p1, . . . , pk) ∈ Ck to the point p1 + . . .+ pk ∈ C(k) has de-
gree k!. The k-fold symmetric product is a smooth projective variety of dimension
k (cf. [2, p. 18]), and it parametrizes the effective divisors on C of degree k or,
equivalently, the unordered k-tuples of points of C.

2.2. Linear series and subordinate loci. Let d and r be some positive integers.
As is customary, we denote by W r

d (C) ⊂ Picd(C) the subvariety parametrizing the
complete linear systems on C of degree d and dimension at least r. We recall
that the dimension of W r

d (C) is bounded from below by the Brill-Noether number
ρ(g, r, d) := g − (r + 1)(g − d+ r), and if the curve C is very general in the moduli
space Mg, then dimW r

d (C) equals ρ(g, r, d).
Let Gr

d(C) be the variety of linear series on C of degree d and dimension exactly
r whose points are said grd’s. We note that the gonality of C is the minimum d
such that C admits a g1d. Moreover, any complete grd on C can be thought of as an
element of W r

d (C).
Given a linear series D ∈ Gr

d(C), we define the locus of divisors on C subordinate
to D as

(2.1) Γk (D) :=
{
P ∈ C(k) |D − P ≥ 0 for some D ∈ D

}
.

We point out that the linear series D is not assumed to be base-point-free. Fur-
thermore, the locus Γk (D) is a subvariety of C(k), and if the dimension of D is
r = k − 1, then Γk (D) is a divisor.

2.3. Canonical divisor on C(k). Let φ : C −→ Pg−1 be the canonical map of the
smooth curve C of genus g. For 1 ≤ k ≤ g − 1, let us consider the k-fold symmetric
product C(k) and the Grassmannian variety G(k− 1, g − 1) parametrizing (k − 1)-
dimensional planes in Pg−1. As φ(C) is a non-degenerate curve of Pg−1, by the
General Position Theorem the Gauss map

(2.2) Gk : C
(k) ��� G(k − 1, g − 1),

sending a point p1 + . . .+ pk ∈ C(k) to the linear span of the φ(pi)’s in Pg−1, is well
defined.

Let |KC(k) | be the canonical linear system on C(k) and let

ψk : C
(k) −→ P

(
Hk,0(C(k))

)
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be the induced canonical map. Since

(2.3) Hk,0
(
C(k)

)
∼=

k∧
H1,0(C)

(cf. [15]), we have the commutative diagram

C(k)

Gk ���
�����

ψk �������������� PN

G(k − 1, g − 1)

p

�������������

where N :=
(
g
k

)
− 1 and p : G(k − 1, g − 1) −→ PN is the Plücker embedding.

We recall that for any L ∈ G(g − k − 1, g − 1), the Schubert cycle
σ1(L) := {l ∈ G(k − 1, g − 1) | l ∩ L 	= ∅} maps into a hyperplane section of
p (G(k − 1, g − 1)) ⊂ PN . Then it is possible to provide canonical divisors on the
k-fold symmetric products of C as follows.

Lemma 2.1. For any L ∈ G(g − k − 1, g − 1), let πL : φ(C) ��� Pk−1 be the pro-
jection from the (g − k − 1)-plane L of the canonical image of C and let DL be the
associated linear series on C - not necessarily base-point-free - of degree 2g− 2 and
dimension k − 1. Then the effective divisor Γk(DL) defined in (2.1) is a canonical
divisor of C(k), that is, Γk(DL) ∈ |KC(k) |.

In particular, a generic point P = p1 + . . .+ pk ∈ C(k) lies on the divisor Γk(DL)
if and only if the linear span of the φ(pj)’s in Pg−1 is a point of the Schubert cycle
σ1(L), that is, Gk(P ) intersects L.

2.4. Monodromy. To conclude this section, we follow [10] to recall some basic
facts on the monodromy of a generically finite dominant morphism F : X −→ Y of
degree d between irreducible complex algebraic varieties of the same dimension.

Let U ⊂ Y be a suitable Zariski open subset of X such that the restriction
F−1(U) −→ U is an unbranched covering of degree d. Given a generic point y ∈ U ,
by lifting loops at y to F−1(U), we may define the monodromy representation
ρ : π1(U, y) −→ Aut

(
F−1(y)

) ∼= Sd and we define the monodromy group M(F ) of
F to be the image of the latter homomorphism.

Equivalently, let L be the normalization of the algebraic field extension
K(X)/K(Y ) of degree d, and let Gal(L/K(Y )) be the Galois group of L/K(Y ),
that is, the group of the automorphisms of the field L fixing every element of K(Y ).
Then the monodromy group M(F ) and the Galois group Gal(L/K(Y )) are isomor-
phic (see [10, p. 689]). In particular, this implies that the monodromy group of
F is independent of the choice of the Zariski open set U . Moreover, F should not
necessarily be a morphism, but it suffices being a dominant rational map.

The simple fact we want to point out is that the action of M(F ) on the fiber
F−1(y) is transitive because of the connectedness of X. Roughly speaking, this
means that the points of the fiber over a generic point are indistinguishable. Namely,
suppose that a point xi ∈ F−1(y) enjoys some special property such that as we vary
continuously the point y on a suitable open subset U ⊂ Y , that special property
is preserved as we follow the correspondent point of the fiber. Then for any loop
γ ∈ π1(U, y), we have that the ending point xj ∈ F−1(y) of the unique lifting γ̃
of γ starting from xi must enjoy the same property. Hence the transitivity of the
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action assures that there is no way to distinguish a point of the fiber over y ∈ Y
from another for enjoying a property as above.

3. Linear subspaces of Pn
in special position

In this section we deal with sets of linear subspaces of the n-dimensional projec-
tive space satisfying a condition of Cayley-Bacharach type. In particular, we shall
provide a bound on the dimension of their linear span in Pn, and we shall present
some examples proving the sharpness of the bound. The reasons for studying these
particular linear spaces shall be clear in the next section, when we shall relate them
to correspondences on symmetric products of curves.

To start we recall the following definition (cf. [9]).

Definition 3.1. Let D be a complete linear system on a projective variety X. We
say that a 0-cycle P1 + . . .+ Pd ⊂ X(d) satisfies the Cayley-Bacharach condition
with respect to D if for every i = 1, . . . , d and for any effective divisor D ∈ D passing

through P1, . . . , P̂i, . . . , Pd, we have Pi ∈ D as well.

Let n and k be two integers with n ≥ k ≥ 2, and let G(k − 1, n) be the Grass-
mann variety of (k − 1)-planes in Pn. For an integer d ≥ 2, let us consider a set
{l1, . . . , ld} ⊂ G(k − 1, n) and suppose that the associated 0-cycle l1 + . . .+ ld sat-
isfies the Cayley-Bacharach condition with respect to the complete linear series
|OG(k−1,n)(1)|.

We recall that for any L ∈ G(n− k, n), the Schubert cycle

σ1(L) := {l ∈ G(k − 1, n)|l ∩ L 	= ∅}
is an effective divisor of |OG(k−1,n)(1)|. Thus the set {l1, . . . , ld} is such that for ev-

ery i = 1, . . . , d and for any L ∈ G(n− k, n) with l1, . . . , l̂i, . . . , ld ∈ σ1(L), we have
li ∈ σ1(L) as well. Then it makes sense to give the following definition expressing a
condition of Cayley-Bacharach type for (k− 1)-dimensional linear subspaces of Pn.

Definition 3.2. We say that the (k−1)-planes l1, . . . , ld ⊂ Pn are in special position
with respect to (n − k)-planes if for every i = 1, . . . , d and for any (n − k)-plane

L ⊂ Pn intersecting l1, . . . , l̂i, . . . , ld, we have li ∩ L 	= ∅.

We note that the (k− 1)-planes in the definition are not assumed to be distinct.
In particular, it is immediate to check that two (k − 1)-planes l1, l2 ⊂ Pn are in
special position if and only if they coincide.

The main result of this section is the following.

Theorem 3.3. Let 2 ≤ k, d ≤ n be some integers and suppose that the (k − 1)-
planes l1, . . . , ld ⊂ Pn are in special position with respect to (n − k)-planes of Pn.
Then the dimension of their linear span S := Span(l1, . . . , ld) in Pn is s ≤

[
kd
2

]
− 1.

In order to prove this result, let us state the following preliminary lemma.

Lemma 3.4. Under the assumption of Theorem 3.3, suppose further that there

exists a linear space R ⊂ Pn containing l1, . . . , l̂j , . . . , ld. Then lj ⊂ R as well.

Proof. Let r denote the dimension of R. If r = n the statement is trivially true,
and then let us assume r < n. As k − 1 ≤ r we have that 0 ≤ r − k + 1 ≤ n− k,
and we can consider an (r − k + 1)-plane T ⊂ R. Then T intersects each of the
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(k−1)-planes l1, . . . , l̂j , . . . , ld. Therefore, by special position property, any (n−k)-
plane L containing T must intersect lj , thus lj ∩ T 	= ∅. Therefore lj meets every
(r − k + 1)-plane T ⊂ R, and hence lj ⊂ R. �

Proof of Theorem 3.3. Let us fix 2 ≤ k, d ≤ n. Notice that if n ≤
[
kd
2

]
− 1, the

statement is trivially proved. Hence we assume hereafter that n ≥
[
kd
2

]
. We proceed

by induction on the number d of (k − 1)-planes.
Let l1, l2 ⊂ Pn be two (k − 1)-dimensional planes in special position with re-

spect to (n − k)-planes. Then we set R := l1 and Lemma 3.4 implies l2 ⊂ R.
Hence R = l1 = l2 and [kd2 ]− 1 = k − 1 = dimR. Thus the statement is proved
when d = 2.

By induction, suppose that the assertion holds for any 2 ≤ h ≤ d− 1 and for
any h-tuple of (k − 1)-dimensional linear subspaces of Pm in special position with
respect to (m− k)-planes, with m ≥ h.

Now, let l1, . . . , ld ⊂ Pn be (k − 1)-planes in special position with respect to
(n− k)-planes.

We first consider the case where it is not possible to choose one of the li’s such
that it does not coincide with any of the others. In this situation, the number of
distinct li’s is at most

[
d
2

]
. Thus the dimension of their linear span in Pn is at most

k
[
d
2

]
− 1 ≤

[
kd
2

]
− 1, as claimed.

Then we consider the (k−1)-plane l1 and we suppose - without loss of generality
- that it does not coincide with any of the others li’s. Therefore it is possible to
choose a point p ∈ l1 such that p 	∈ li for any i = 2, . . . , d. Moreover, let H ⊂ Pn be
a hyperplane not containing p and consider the projection

πp : Pn − {p} −→ H ∼= Pn−1,
q �−→ pq ∩H .

For 2 ≤ i ≤ d, let λi := πp (li) ⊂ H be the image of li on H. We claim that the
(k−1)-planes λ2, . . . , λd ⊂ H are in special position with respect to (n−1−k)-planes
of H ∼= Pn−1. To see this fact, let j ∈ {2, . . . , d} and let Λ ⊂ H be an (n − 1 − k)

plane intersecting λ2, . . . , λ̂j , . . . , λd. Since p ∈ l1, it follows that the (n− k)-plane

L := Span(Λ, p) ⊂ Pn intersects l1, . . . , l̂j , . . . , ld. As they are in special position
with respect to (n − k)-planes, we have that L intersects lj as well. Then, given
a point qj ∈ L ∩ lj , we have that πp(qj) ∈ Λ. In particular, Λ meets λj at πp(qj),
and hence λ2, . . . , λd ⊂ H are in special position with respect to (n− 1− k)-planes
of the hyperplane H ∼= Pn−1.

By induction, the linear span Σ := Span(λ2, . . . , λd) ⊂ H has dimension

dimΣ ≤
[
k(d−1)

2

]
− 1. Then the linear space R := Span(λ2, . . . , λd, p) ⊂ Pn has

dimension dimR = dimΣ + 1 ≤
[
k(d−1)

2

]
≤
[
kd
2

]
− 1 for any k ≥ 2. Notice that R

contains l2, . . . , ld. Hence l1 ⊂ R as well by Lemma 3.4. Thus R contains the linear
span in Pn of all the li’s and the assertion follows. �

We would like to note that the assumption k ≥ 2 in Theorem 3.3 is necessary.
For instance, let k = 1 and consider three collinear points in Pn. Clearly, they are
in special position with respect to (n− 1)-planes and [kd2 ]− 1 = 0, but they span a
line.

On the other hand, when k = 2 the theorem assures that if {l1, . . . , ld} is a set of
d lines in special position with respect to (n−2)-planes of Pn, then their linear span
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has dimension lower than d. The following examples concern the configuration of
such lines in Pd−1 and show that the latter bound is sharp.

Example 3.5. Let us consider three distinct lines l1, l2, l3 in Pn. Then they are
in special position with respect to (n− 2)-planes if and only if they lie on a plane
π ⊂ Pn and they meet at a point p ∈ π.

Indeed, suppose that l1, l2, l3 are in special position with respect to (n − 2)-
planes. Therefore they must lie on a plane π ⊂ Pn by Theorem 3.3. Then consider
the point p = l2 ∩ l3 and let L be an (n− 2)-plane such that L ∩ π = {p}. Thus L
must also intersect l1 by special position property, and hence p ∈ l1.

On the other hand, it is immediate to check that if three distinct lines of Pn lie
on the same plane and meet at a point, then any (n− 2)-plane intersecting two of
them intersects the last one as well.

Example 3.6. Let l1, . . . , l4 ⊂ Pn be four skew lines. Then they are in special
position with respect to (n− 2)-planes if and only if they lie on the same ruling of
a quadric surface Q ⊂ P3. In particular, the li’s span the whole P3.

If the li’s enjoy special position property, they span a linear subspace S ∼= P3 by
Theorem 3.3. Let Q ⊂ S be the quadric defined as the union of the lines intersecting
l1, l2 and l3. By special position property, any line L ⊂ S intersecting l1, l2, l3 must
meet l4, too. Hence l4 ⊂ Q as well, and it lies on the same ruling of the other li’s.

To see the converse, it suffices to observe that any quadric surface Q ⊂ P3 is
covered by two families of skew lines, L and L′, such that any two lines l ∈ L and
l′ ∈ L′ meet at a point (see e.g. [8, p. 478]).

Example 3.7. In general, if l1, . . . , ld ⊂ Pd−1 are skew lines lying on a non-degener-
ate surface Q ⊂ Pd−1 of minimal degree, then they are in special position with
respect to (d− 3)-planes.

Under these assumptions, Q is a ruled surface of degree d− 2 (cf. [8, p. 522]).
If L ⊂ Pd−1 is a (d − 3)-plane intersecting l1, . . . , ld−1, then L ∩ Σ is a curve C of
degree degC ≤ d− 2. In particular, C does not lie on the ruling of Q, and hence
it must intersect ld, too.

4. Correspondences with null trace

on symmetric products of curves

In order to deal with correspondences with null trace on symmetric products of
curves, we would like to recall the basic properties of Mumford’s induced differen-
tials (see [18, Section 2]) and their applications to the study of correspondences (cf.
[14, Section 2]). Then we shall turn to symmetric products of curves and we shall
prove the main result of this section, which gives a geometric interpretation of the
existence correspondences with null trace on these varieties.

Let X and Y be two projective varieties of dimension n, with X smooth and Y
integral.

Definition 4.1. A correspondence of degree d on Y ×X is a reduced n-dimensional
variety Γ ⊂ Y ×X such that the projections π1 : Γ −→ Y , π2 : Γ −→ X are gener-
ically finite dominant morphisms and deg π1 = d. Moreover, if deg π2 = d′ we say
that Γ is a (d, d′)-correspondence.

So, let Γ ⊂ Y ×X be a correspondence of degree d. Let Xd = X × . . .×X be
the d-fold ordinary product of X and let pi : X

d −→ X be the i-th projection map,
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with i = 1, . . . , d. Let us consider the d-fold symmetric product X(d) = Xd/Sd

of X together with the quotient map π : Xd −→ X(d). Then we define the set
U := {y ∈ Yreg | dimπ−1

1 (y) = 0} and the morphism γ : U −→ X(d) given by

γ(y) := P1 + . . .+ Pd, where π−1
1 (y) = {(y, Pi) | i = 1, . . . , d}.

By using Mumford’s induced differentials, we want to define the trace map of γ.
To this aim, we consider a holomorphic n-form ω ∈ Hn,0(X) and the (n, 0)-form

ω(d) :=

d∑
i=1

p∗iω ∈ Hn,0(Xd),

which is invariant under the action of Sd. Thus for any smooth variety W and for
any morphism f : W −→ X(d), there exists a canonically induced (n, 0)-form ωf on
W (cf. [18, Section 2]). In particular, we define Mumford’s trace map of γ as

Trγ : Hn,0(X) −→ Hn,0(U),
ω �−→ ωγ .

Another way to define the trace map of γ is the following. Let us consider the
sets V := {y ∈ U |π−1

1 (y) has d distinct points} and

X
(d)
0 := π

⎛
⎝Xd −

⋃
i,j

Δi,j

⎞
⎠ ,

where Δi,j is the (i, j)-diagonal of Xd, with i, j = 1, . . . , d and i 	= j. Moreover, let
us define the map

δd : Hn,0(X) −→ Hn,0(X
(d)
0 ),

ω �−→ π∗(ω
(d)),

i.e. ω(d) is thought of as an (n, 0)-form on X
(d)
0 . Then Imγ|V ⊂ X

(d)
0 and the

Mumford’s trace map of γ turns out to be Trγ = γ∗
|V ◦ δd (cf. [14, Proposition

2.1]).
The following result shows that the property of having null trace imposes strong

conditions on the correspondence Γ ⊂ Y ×X. We would like to note that in [14,
Proposition 2.2] it is presented in the case of correspondences on surfaces, but it is
still true when X and Y are n-dimensional varieties, and the proof follows the very
same argument.

Proposition 4.2. Let X and Y be two projective varieties of dimension n, with X
smooth and Y integral. Let Γ be a correspondence of degree d on Y ×X with null
trace. Let y ∈ Yreg such that dimπ−1

1 (y) = 0 and let

π−1
1 (y) = {(y, Pi) ∈ Γ | i = 1, . . . , d}

be its fiber. Then the 0-cycle P1 + . . .+ Pd satisfies the Cayley-Bacharach condition
with respect to the canonical linear series |KX |. That is, for every i = 1, . . . , d

and for any effective canonical divisor KX containing P1, . . . , P̂i, . . . , Pd, we have
Pi ∈ KX .

Now we turn to symmetric products of curves and state the main result of this
section. Let us consider a smooth projective curve C of genus g and let C(k) be its
k-fold symmetric product, with 2 ≤ k ≤ g − 1. Let us denote by φ : C −→ Pg−1 the
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map induced by the canonical linear series |KC | on C. The following result connects
the existence of a correspondence with null trace on C(k) and the geometry of the
canonical image of C.

Theorem 4.3. Let C be a smooth projective curve of genus g and let Y be a
projective integral variety of dimension 2 ≤ k ≤ g − 1. Let Γ be a correspondence
of degree d ≥ 2 on Y × C(k) with null trace. For a generic point y ∈ Yreg, let

π−1
1 (y) = {(y, Pi) ∈ Γ | i = 1, . . . , d} be its fiber, where Pi = pi1 + . . .+ pik ∈ C(k)

for i = 1, . . . , d. Then the linear span of all the φ(pij)’s in Pg−1 has dimension

s ≤
[
k d

2

]
− 1.

Proof. By Proposition 4.2 the 0-cycle P1 + . . .+ Pd satisfies the Cayley-Bacharach
condition with respect to the canonical linear series |KC(k) |. For any (g − k − 1)-
plane L ⊂ Pg−1, Lemma 2.1 assures that the subordinate locus Γk(DL) is an ef-
fective canonical divisor on C(k). Therefore for every i = 1, . . . , d and for any

L ∈ G(g − k − 1, g − 1) with P1, . . . , P̂i, . . . , Pd ∈ Γk(DL), we have Pi ∈ Γk(DL) as
well.

Now, let Gk : C
(k) ��� G(k − 1, g − 1) be the Gauss map sending a point P = p1+

. . .+ pk to the linear span of the φ(pj)’s in Pg−1. We recall that for any

L ∈ G(g − k − 1, g − 1)

and for any P ∈ C(k), we have that P ∈ Γk(DL) if and only if Gk(P ) intersects
L. Thus the 0-cycle P1 + . . .+ Pd is such that for every i = 1, . . . , d and for any

L∈G(g−k−1, g−1) intersecting the (k−1)-planes Gk(P1), . . . , Ĝk(Pi), . . . ,Gk(Pd),
we have Gk(Pi) ∩ L 	= ∅.

In particular, the (k − 1)-planes Gk(P1), . . . ,Gk(Pd) are in special position with
respect to (g − k − 1)-planes (cf. Definition 3.2). Therefore Theorem 3.3 assures
that their linear span in Pg−1 has dimension lower than

[
kd
2

]
. Since any Gk(Pi) is

generated by φ(pi1), . . . , φ(pik), we conclude that the linear span of all the φ(pij)’s

in Pg−1 has dimension bounded by
[
kd
2

]
− 1, as claimed. �

As we anticipated, Theorem 4.3 shall turn out to be very useful to deal with the
degree of irrationality and the degree of gonality on second symmetric products of
curves. In particular, when k = 2 the latter result assures that the φ(pij)’s span a
linear subspace of Pg−1 of dimension s ≤ d− 1.

The following assertion is an immediate consequence of Theorem 4.3 connecting
the existence of correspondences with null trace on C(k) and the existence of a
complete linear series on C.

Corollary 4.4. Under the assumption of Theorem 4.3, suppose in addition that
C is non-hyperelliptic and that the number of distinct pij’s is m > [kd2 ]. Then C
possesses a complete grm with r ≥ 1.

Proof. Let m be the number of distinct pij ’s on C and let us denote by q1, . . . , qm
these points. Consider the divisor D = q1 + . . .+ qm of degree m on C. As the
curve C is non-hyperelliptic, the canonical map φ is an embedding and the φ(qt)’s
are all distinct. Hence their linear span in Pg−1 has dimension lower than [kd2 ].
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Therefore by the geometric version of Riemann-Roch theorem we have

dim |D| = m− 1− dimφ(D) ≥ m−
[
kd

2

]
≥ 1.

Thus |D| = |q1 + . . .+ qm| is a complete grm on C with r ≥ 1. �

Remark 4.5. In [9], Griffiths and Harris studied 0-cycles on an algebraic variety
X satisfying the Cayley-Bacharach condition with respect to a complete linear
system |D|. In particular, given such a 0-cycle P1 + . . .+ Pd and the rational map
φ|D| : X ��� Pr, they present some results on the dimension of the linear span of
the φ|D|(Pi)’s in Pr and, consequently, on the existence of linear series on X. We

note that we start from an analogous situation with X = C(k), but the results of
this section deal with the study of the geometry of the curve C and not with X.

To conclude this section, we would like to present two important examples of
correspondences with null trace on the k-fold symmetric product, which shall be
involved in the proofs of the following sections.

Example 4.6. For any dominant rational map F : C(k) ��� Pk of degree d, its
graph

Γ :=
{
(y, P ) ∈ Pk × C(k) | F (P ) = y

}
is a (d, 1)-correspondence on Pk × C(k) with null trace. To see this fact, notice
that the fiber F−1(y) over a generic point y ∈ Pk is given by d distinct points
P1, . . . , Pd ∈ C(k). Hence Γ is a reduced variety and the projection π1 : Γ −→ Pk

is a generically finite dominant morphism of degree d. Moreover, we have that

the map γ : U ⊂ Pk −→
(
C(k)

)(d)
introduced at the beginning of this section is a

rational map between smooth projective varieties. Therefore the indeterminacy
locus can be resolved to a codimension 2 subvariety of Pk. Being Hk,0(Pk) trivial,
we then have that the trace map Trγ is null. Thus Γ is a (d, 1)-correspondence

on Pk × C(k) with null trace. We note that this fact is still true for any smooth
n-dimensional projective variety admitting a dominant rational map of degree d on
Pn.

Example 4.7. Let T be a (k − 1)-dimensional smooth variety and let E = {Et}t∈T

be a family of curves covering C(k) such that the generic member Et is an irreducible
d-gonal curve, i.e. the normalization of Et has a base-point-free g1d. As in [14, proof

of Corollary 1.7], we want to define a correspondence Γ ⊂ Y × C(k) with null trace
and degree d for an appropriate ruled variety Y .

To this aim, we think of the variety C(k) as it is embedded in some projective
space and, for any t ∈ T , we denote by Ht the Hilbert scheme of curves on C(k)

containing the point et representing Et. We note that if t is generic, then dimHt ≥
k− 1. Indeed, if dimHt < k− 1 for any t, then

⋃
t∈T

Ht =
⋃

deg ˜Et,g( ˜Et)

Hilbdeg ˜Et,g( ˜Et)

would be the union of countably many schemes of dimension ≤ k−2, and the curves
parametrized over it would cover the k-dimensional variety C(k), a contradiction.
Given a generic point t ∈ T , let H ⊂ Ht be a (k − 1)-dimensional subvariety
containing et. We recall that the Hilbert scheme is a fine moduli space, so we can
consider the universal family U := {(eτ , P ) | eτ ∈ H and P ∈ Eτ} over H and - up

to shrink H - the family Ũ of the normalized curves. Furthermore, by making a
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base change

F
ρ

��

�� Ũ
pr1

��

B �� H

we can assume to have a map μ : F −→ P1 ×B such that the diagram

F

ρ
���

��
��

��
��

μ
�� P1 ×B

pr2

��

B

is commutative, and for any b ∈ B the restriction μb : Fb −→ P1 is the given g1d
on the curve Fb := ρ−1(b). We note that any fiber of F is the normalization
νb : Fb −→ F ′

b of a curve lying on C(k). We then define the k-dimensional varieties
Y := P1 ×B and

Γ :=
{(

(z, b), P
)
∈ Y × C(k) | P ∈ (F ′

b)reg and μb ◦ ν−1
b (P ) = z

}
.

We claim that Γ ⊂ Y × C(k) is a correspondence of degree d with null trace. Since
the Fb’s are the normalizations of curves covering an open subset of C(k) and the
map μb is a g1d, we have that both the projections π1 : Γ −→ Y and π2 : Γ −→ C(k)

are dominant morphisms, with deg π1 = d. Furthermore, the map π2 is generically
finite as well: if there exist infinitely many curves F ′

b passing through the generic

point P ∈ C(k), then B would be at least a k-dimensional variety. Finally, the space
Hk,0(Y ) is trivial because Y is a ruled projective variety, and, by arguing as in the
previous example, we deduce that the correspondence Γ has null trace.

5. Degree of gonality

Let C be a smooth complex projective curve of genus g ≥ 0. In this section we
deal with the gonality of moving curves on the second symmetric product C(2) and
we compute the degree of gonality of this surface, which is the positive integer we
defined to be

do(C
(2)) := min

⎧⎨
⎩d ∈ N

∣∣∣∣∣∣
there exists a family E = {Et}t∈T

covering C(2) whose generic member is
an irreducible d-gonal curve

⎫⎬
⎭ .

The degree of gonality of C(2) in cases of low genera is easily given. When C is a
rational curve, then C(2) ∼= P2 and hence do(C

(2)) = 1. On the other hand, if C is
supposed to be an elliptic curve, then the fibers of the Abel map C(2) −→ J(C) ∼= C
are isomorphic to P1 and the second symmetric product of C is birational to C × P1.
Thus do(C

(2)) = do(C × P1) = 1.
We note that for any g ≥ 0, the surface C(2) is covered by the family C = {Cp}p∈C

of curves parametrized over C, where Cp := C + p = {p+ q | q ∈ C}. Clearly, any
Cp is isomorphic to C itself. Therefore the degree of gonality of the second sym-
metric product of a curve of genus g ≥ 0 is such that

(5.1) do(C
(2)) ≤ gon(C).
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In particular, since the only rational curve lying on the second symmetric product
of a hyperelliptic curve of genus g = 2 is the fiber of the g12 via the Abel map
u : C(2) → J(C), we have that do(C

(2)) = 2.
When the curve C has genus g ≥ 3, Theorem 1.5 assures that the gonality of

moving curves on C(2) must be greater than or equal to gon(C). Hence Theorem 1.6
follows straightforwardly from the latter result and inequality (5.1). We have then
resolved the problem of computing the degree of irrationality on second symmetric
products of curves, that is, do(C

(2)) = gon(C) for any C of genus g ≥ 3.

Remark 5.1. Let C be a smooth projective curve of genus g ≥ 0 and let C(k) be its
k-fold symmetric product, with k ≥ 3.

When k > g, we have that C(k) is birational to J(C)× Pk−g by Abel’s theorem.
Thus C(k) is covered by a family of rational curves, and hence the degree of gonality
is do(C

(k)) = 1.
On the other hand, when k ≤ g, the k-fold symmetric product of C is cov-

ered by the family C = {CP }P∈C(k−1) of curves parametrized over C(k−1), where
CP := {P + q | q ∈ C}. Since any such curve is isomorphic to C, we still have the
inequality do(C

(k)) ≤ gon(C). In particular, it seems natural to conjecture that
this bound is actually an equality, but the techniques we used above do not work
to prove this fact.

Let us now prove Theorem 1.5. The argument of the proof is essentially based
on Theorem 4.3 and Abel’s theorem.

Proof of Theorem 1.5. Notice that if C is a hyperelliptic curve of genus g ≥ 3,
the only rational curve lying on C(2) is the fiber of the g12 via the Abel map
u : C(2) → J(C). Therefore the gonality of the generic curve Et must be d ≥ 2 =
gon(C), and the assertion follows. Then we assume hereafter that C is non-
hyperelliptic. Moreover, aiming for a contradiction we suppose that d < gon(C)
and we proceed by steps.

Step 1 (Correspondence on C(2)). As C(2) is two-dimensional and E is a family
of curves - up to restricting E to a subvariety of T - we can assume that T has

dimension one. Following Example 4.7 we can then construct a family F ρ−→ B of
smooth d-gonal curves such that the diagram

F

ρ
���

��
��

��
��

μ
�� P1 ×B

pr2

��

B

is commutative, and for any b ∈ B the restriction μb : Fb −→ P1 is the given g1d
on the curve Fb := ρ−1(b). In particular, any such curve is the normalization
νb : Fb −→ F ′

b of a curve lying on C(2), which generically is one of the Et’s. Then
we set Y := P1 ×B and we have that the surface

Γ :=
{(

(z, b), P
)
∈ Y × C(k) | P ∈ (F ′

b)reg and μb ◦ ν−1
b (P ) = z

}
is a correspondence of degree d on Y × C(k) with null trace.

As usual, let π1 : Γ −→ Y be the restriction of the first projection map, and for a
very general point (z, b) ∈ Y , let π−1

1 (z, b) =
{(

(z, b), Pi

)
∈ Y × C(2) | i = 1, . . . , d

}
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be its fiber, with Pi = p2i−1 + p2i. Moreover, let D = D(z,b) ∈ Div(C) be the effec-
tive divisor given by

(5.2) D := p1 + . . .+ p2d =
m∑
j=1

njqj

for some positive integers nj = multqj (D), where the qj ’s are assumed to be distinct
points of C.

Step 2 (nj = 1 for all j). We suppose that nj = 1 for any 1 ≤ j ≤ m; that is,
m = 2d, and the points defining D are all distinct. Let φ : C −→ Pg−1 be the
canonical embedding of C and let φ(D) be the linear span of the points φ(pi) in
Pg−1. As Γ is a correspondence of degree d on C(2) with null trace, by Theorem
4.3 we have that dimφ(D) ≤ d− 1.

If C is a non-hyperelliptic curve of genus g = 3, we have that C(2) is non-
covered by a family of rational curves and gon(C) = 3. Hence d = 2 and the

curves of the family F are hyperelliptic. Moreover, the linear span φ(D) ⊂ P2 of
the points φ(p1), . . . , φ(p4) is a line, that is, D is a canonical divisor on C. Let
ι : C(2) −→ C(2) be the involution p+ q �−→ KC − p− q, sending a point to the
residual of the canonical system. We note that the map ιb induced on the generic
curve Fb of the family F is the hyperelliptic involution. Thus the quotient surface
C(2)/〈ι〉 is covered by a family of rational curves, but this is impossible because the
latter surface is of general type. To see this fact it suffices to observe that C(2) is a

surface of general type and that the map C(2) −→ P(
g
2)−1 induced by the canonical

linear system |KC(2) | factors through ι, because the Gauss map G in (2.2) does as
well.

On the other hand, let us assume g ≥ 4. By the geometric version of Riemann-
Roch theorem we have

dim |D| = degD − 1− dimφ(D) ≥ 2d− 1− (d− 1) = d =
degD

2
.

Therefore we have that eitherD is zero, D is a canonical divisor or C is hyperelliptic
by Clifford’s theorem (cf. [2, p. 107]). Notice that C is assumed to be non-

hyperelliptic and 0 < d < gon(C) ≤
[
g+3
2

]
. Hence 0 < degD = 2d < 2g − 2 for any

g ≥ 4, and we have a contradiction. Thus the points p1, . . . , p2d cannot be distinct.

Step 3 (nj > 1 for some j). Let us then assume that the points p1, . . . , p2d are
not distinct, i.e. the integers nj are not all equal to 1. For any k = 1, . . . , 2d
let us consider the set Qk := {qj ∈ SuppD |nj = k} of the points of D such that

multqj (D) = k. Notice that the cardinality of any Qk is at most
[
2d
k

]
. As the nj ’s

are not all equal to 1, there exist some k > 1 such that the corresponding sets Qk

are not empty. Let h > 1 be the minimum of these integers and - without loss of
generality - suppose Qh = {q1, . . . , qs}, where s ≤

[
2d
h

]
is the cardinality of Qh.

Since Y is connected, the fibers of π1 over generic points of Y have the same
configuration; i.e. the cardinality of any setQh is constant as we vary the point (z, b)
on a suitable open set U ⊂ Y . Thus we may define a rational map ξ : Y ��� C(s)

sending a generic point (z, b) ∈ Y = P1×B to the effective divisor q1+. . .+qs ∈ C(s).
For a very general b ∈ B, let

ξb : P1 × {b} −→ C(s),
(z, b) �−→ q1 + . . .+ qs
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be the restriction of ξ to the rational curve P1 × {b} ⊂ Y and let us consider the
composition with the Abel map

P1 × {b} ξb−→ C(s) −→ J(C) .

As P1 × {b} is a rational curve mapping into a Jacobian variety, the latter map is
constant. Hence by Abel’s theorem, either |q1 + . . .+ qs| is a complete linear series
of degree s and dimension at least 1 or ξb is a constant map. Being that h > 1
and s ≤

[
2d
h

]
, we have s ≤ d < gon(C). Then |q1 + . . .+ qs| cannot be such a linear

series.
Therefore the map ξb must be constant. By the construction of ξb, this fact

means that for any z ∈ P1 the divisor D = D(z,b) - defined in (5.2) by the fiber

π−1
1 (z, b) - must contain all the points q1, . . . , qs that are now fixed. We recall

that π−1
1 (z, b) is given by the points ((z, b), Pi) ∈ Y × C(2) such that Pi ∈ F ′

b and

μb ◦ ν−1
b (Pi) = z, where Pi = p2i−1 + p2i. Hence one of the Pi’s must lie on the

curve C + q1, one on C + q2, and so on. As we vary z on P1, the Pi’s must vary on
F ′

b, but the latter condition must hold. It follows that the curve F ′
b must have at

least s irreducible components F ′
b1, . . . ,F ′

bs such that F ′
bj ⊂ C + qj for 1 ≤ j ≤ s.

We recall that for the generic b ∈ B, the curve F ′
b coincides with a generic element

Et of the family E . Since both Et and C + qj are irreducible curves, we deduce
s = 1 and Et = C + q1. Then we get a contradiction because C + q1 ∼= C, and
hence d = gon(Et) = gon(C). Thus we conclude that the gonality d of the generic
Et is d ≥ gon(C).

Step 4 (d = gon(C)). To conclude the proof of the statement, let us suppose that

C is a curve of genus g ≥ 6 with Aut(C) = {IdC} and d = gon(Ẽt) = gon(C). We
want to prove that the generic Et and C are isomorphic.

To this aim, let us consider the correspondence Γ ⊂ Y × C(2) defined above,
and for a generic point (z, b) ∈ Y , let π−1

1 (z, b) =
{(

(z, b), Pi

)}
be its fiber, with

Pi = p2i−1 + p2i. By arguing as in Step 1 we deduce that the pi’s cannot be distinct.

If they were distinct, then dim |D| = degD
2 and - by Clifford’s theorem - we would

have that either D is zero, D is a canonical divisor or C is hyperelliptic. We note
that the assumption Aut(C) = {IdC} implies that C is non-hyperelliptic. Moreover,
the degree of D is positive and

degD = 2d = 2gon(C) ≤ 2

[
g + 3

2

]
< 2g − 2 for any g ≥ 6.

Hence the divisor D is neither zero nor canonical, and we have a contradiction.
Then we follow the argument of Step 3, and for the generic b ∈ B we may define

the map ξb : P
1 × {b} −→ C(s), with s ≤ d.

If s < d = gon(C), the only possible choice is s = 1 because of the irreducibility
of Et. Hence the generic Et and C turn out to be isomorphic.

On the other hand suppose that s = d = gon(C). Then h = 2, and the divisor
D = D(z,b) in (5.2) has the form D = 2(q1 + . . .+ qd). Since the point (z, b) ∈ Y

is generic and the projections π1 : Γ −→ Y , π2 : Γ −→ C(2) are generically finite
dominant morphisms, we can assume that none of the Pi’s lie on the diagonal curve
Δ := {p+ p | p ∈ C} ⊂ C(2): indeed, if the fiber of π1 over the generic point met
the curve π−1

2 (Δ) ⊂ Γ, such a curve would dominate the surface Y . Moreover, let
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Et be the generic element of the family E corresponding to the curve F ′
b. Thus

- without loss of generality - the points Pi ∈ Et ⊂ C(2) are given by

P1 = q1 + q2, P2 = q2 + q3, . . . , Pd−1 = qd−1 + qd and Pd = qd + q1.

Furthermore, since the map ξb : P
1 × {b} −→ C(d) is non-constant and d = gon(C),

we have that |q1 + . . .+ qd| is a base-point-free g1d on C. This implies that
(Et · C + qj) = 2 for any j. Indeed (Et · C + qj) ≥ 2 because two of the Pi’s lie
on C + qj , and if there existed another point p+ qj ∈ Et, then it would lie on the
support of a divisor D(z,b) of the g

1
d for some z ∈ P1; thus qj would be a base point.

Hence (Et · C + q) = 2 for any q ∈ C because the curves C + q are all numerically
equivalent. We then distinguish two cases.

Suppose that d = 2n is even, and let us show that this situation cannot occur.
So let us consider the permutation σ ∈ Sd given by σ(j) = j + n mod.d for any
1 ≤ j ≤ d. Then σ induces an involution ασ on {q1, . . . , qd}, sending a point qj
to the point qσ(j). In other words, we can think of the qj ’s as the vertices of a
convex polygon whose sides correspond to the Pi’s (e.g. the side P1 is the one
joining q1 and q2), and the involution above sends any qj to the opposite vertex.
In particular, this point of view shows that ασ depends only on the configuration
of the fiber over (z, b), and it can be defined independently from the choice of the
indices of the qj ’s. As (Et ·C + q) = 2 for any q ∈ C and the fiber of π1 over (z, b)
varies holomorphically as we vary z ∈ P1, we can extend the involution above to an
automorphism α : C −→ C. Since α is not the identity on C and Aut(C) = {IdC},
we have a contradiction.

Finally, let us assume that d = 2n+ 1 is odd and let us show that Et
∼= C. We

can define a one-to-one map from {q1, . . . , qd} to the set of the Pi’s by sending a
point qj ∈ C to the point qj+n + qj+n+1 ∈ Et, where the indices are taken mod.d
(i.e. such a map sends any vertex of the polygon to the opposite side). By fixing
b ∈ B and varying z ∈ P1, we then have an isomorphism between C and Et, as
claimed.

Thus Theorem 1.5 is now proved. �

6. Degree of irrationality

Let C be a smooth complex projective curve of genus g ≥ 0. We want to study
the degree of irrationality of the surface C(2),

dr(C
(2)) := min

{
d ∈ N

∣∣∣∣ there exists a dominant rational
map F : C(2) ��� P2 of degree d

}
,

in dependence both on the genus and on the gonality of C.
When C is either a rational or an elliptic curve, the problem of determining the

degree of irrationality of C(2) is totally understood. Namely, if C is rational, then
C(2) is isomorphic to P2. Hence the second symmetric product is a rational surface
and dr(C

(2)) = 1.
On the other hand, let us suppose that g = 1. By Abel’s theorem C(2) is

birational to the non-rational surface C×P1. The curve C admits a double covering
f : C −→ P1, and therefore we may define the degree two map

f × IdP1 : C × P1 −→ P1 × P1.
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Finally, being P1 × P1 and P2 birational surfaces, we conclude that

dr(C
(2)) = dr(C × P1) = 2.

When C is a smooth complex projective curve of genus g ≥ 2, the problem of
computing the degree of irrationality of C(2) is still open. As a consequence of the
main result in [1], we have the following result providing a lower bound.

Proposition 6.1. Let C(k) be the k-fold symmetric product of a smooth curve C
of genus g ≥ k ≥ 2. Then dr(C

(k)) ≥ k + 1.

Proof. Let F : C(k) ��� Pk be a dominant rational map of degree d. By [1, Theorem
3.4], we have that d

(
hl(Pk) + 1

)
≥ hl(C(k)) + 1, where hl(X) denotes the length of

the graded algebra H1,0(X)⊕ . . .⊕Hk,0(X), that is, the maximum integer r such
that there exist homogeneous elements ω1, . . . , ωr with ω1 ∧ . . . ∧ ωr 	= 0. Since
hl(Pk) = 0 and hl(C(k)) = k by (2.3), we conclude that d ≥ k + 1, as claimed. �

In particular, we have that dr(C
(2)) ≥ 3 for any curve of genus g ≥ 2. Moreover,

this estimate turns out to be sharp when the curve has genus two. Indeed, Theorem
3.1 of [20] has presented an example of a genus two curve C ′ whose Jacobian satisfies
dr(J(C

′)) = 3. As C ′(2) maps birationally on J(C ′) we have dr(C
′(2)) = 3 as well.

On the other hand, to provide upper bounds on dr(C
(2)) we have to present

dominant rational maps C(2) ��� P2. In the examples below we exploit the existence
of linear series on C in order to produce such maps. As a consequence, we achieve
the upper bound on dr(C

(2)) stated in Proposition 1.1.

Example 6.2. Let f : C −→ P1 be a morphism of degree d. Then it is always

possible to define the dominant morphism F : C(2) −→
(
P1
)(2) ∼= P2 of degree d2

given by p+ q �−→ f(p) + f(q).

Example 6.3. Suppose that C admits a birational mapping f : C −→ P2 onto a
non-degenerate curve of degree d. Hence we may define a dominant rational map
F : C(2) ��� G(1, 2) ∼= P2 of degree

(
d
2

)
by sending a point p+ q ∈ C(2) to the line

of P2 passing through f(p) and f(q).

Example 6.4. Let f : C −→ P3 be a birational map onto a non-degenerate curve
of degree d. Consider a plane H ⊂ P3 and let F : C(2) ��� H ∼= P2 be the dom-
inant rational map sending a point p+ q ∈ C(2) to the intersection of H with
the line of P3 passing through f(p) and f(q). We note that the degree of F is
(d−1)(d−2)

2 − g. To see this fact, notice that the degree of F is the number of
bisecant lines to f(C) passing through a general point y ∈ H and consider the pro-
jection πy : f(C) −→ P2. As the number of such bisecant lines equals the number
of nodes of the image C ′ := (πy ◦ f)(C) and C ′ is a curve of degree d on P2, we

conclude that degF = pa(C
′)− g(C ′) = (d−1)(d−2)

2 − g.

If C is assumed to be hyperelliptic, by Propositions 1.1 and 6.1 we have that
dr(C

(2)) is either 3 or 4. We mentioned above an example of a hyperelliptic curve
of genus two with dr(C

(2)) = 3. When the genus of C is g ≥ 4, this is no longer
possible, and Theorem 1.2 asserts that the degree of irrationality of hyperelliptic
curves is exactly 4. In particular, the map on P2 reaching the minimum degree is
the morphism described in Example 6.2.

When the curve C is non-hyperelliptic the situation is more subtle and we are
not able to compute the precise value of the degree of irrationality of C(2). However,
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Theorem 1.4 provides several lower bounds in dependence on the genus of the curve.
Notice that for any curve of genus 4 ≤ g ≤ 7 we have dr(C

(2)) ≥ g − 1. As the
following examples show, this fails to be true for larger values of g and it seems to
happen when C covers certain curves.

Example 6.5. For an integer d ≥ 2, let C be a non-hyperelliptic curve of genus
g ≥ 2d2 + 2 provided with a degree d covering f : C −→ E on an elliptic curve
E (a particular case of this setting is given by bielliptic curves of genus greater
than 9). Then we can define the dominant morphism C(2) −→ E(2) of degree d2

sending the point p+ q ∈ C(2) to f(p) + f(q) ∈ E(2). As we saw at the beginning of
this section, dr(E

(2)) = 2 and there exists a dominant rational map E(2) ��� P2 of
degree 2. Therefore we obtain by composition a dominant rational map C(2) ��� P2

of degree 2d2. Thus dr(C
(2)) ≤ 2d2 < g − 1.

Example 6.6. Let C ′ be the genus two curve of [20, Theorem 3.1] we mentioned
above and suppose that C is a non-hyperelliptic curve of genus g ≥ 3d2 + 2 admit-
ting a degree d covering of C ′. Since dr(C

′(2)) = 3 and C(2) admits a covering of
degree d2 of C ′(2), it is immediate to check that dr(C

(2)) ≤ 3d2 < g − 1.

On the other hand, when C is assumed to be very general in the moduli space
Mg, we have dr(C

(2)) ≥ g − 1 for any genus g ≥ 4, as we stated in Theorem 1.3.

Remark 6.7. Let C be a very general curve of genus g ≥ 3. The dominant rational
map C(2) ��� P2 of minimum degree we are able to construct is one of those we
used to establish Proposition 1.1. As in the proposition, let δ1 be the gonality
of C and for any m ≥ 2 let δm be the minimum of the integers d such that C
admits a birational mapping onto a non-degenerate curve of degree d in Pm. The
value of δm can be easily computed using the Brill-Noether number and - except for
finitely many genera - the map of minimum degree is the one using g2d’s in Example
6.3. We note further that we can construct analogously a dominant rational map
C(k) ��� Pk of degree

(
δk
k

)
by using gkd ’s on C. Then we do not expect the bound in

Theorem 1.3 to be sharp, and we conjecture that - except for finitely many genera
- the degree of irrationality of symmetric products of a generic curve C of genus g
is dr(C

(k)) =
(
δk
k

)
, for any 1 ≤ k ≤ g − 1.

Now, in order to prove the main theorems on this topic, we fix some notation
and we state three preliminary lemmas.

By F : C(2) ��� P2 we hereafter denote a dominant rational map of minimal
degree, that is d := degF = dr(C

(2)). Given a point y ∈ P2, we consider its fiber

(6.1) F−1(y) = {p1 + p2, . . . , p2d−1 + p2d} ⊂ C(2)

and we define the divisor Dy ∈ Div(C) associated to y as

(6.2) Dy := p1 + p2 + . . .+ p2d−1 + p2d .

Then, by a simple monodromy argument we have the following.

Lemma 6.8. There exists an integer 1 ≤ a ≤ d such that for a generic point y ∈ P2,
we have multpj

(Dy) = a for any j = 1, . . . , 2d.
In particular, the divisor Dy defined above has the form Dy = a(q1+q2+. . .+qm),

where m = 2d
a and the qj’s are distinct points of C.
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Proof. Let G : C × C ��� P2 be the dominant rational map of degree 2d defined as
G(p, q) := F (p+ q) ∈ P2. Given a generic point y ∈ P2, let

G−1(y) = {(p1, p2), (p2, p1), . . . , (p2d−1, p2d), (p2d, p2d−1)} ⊂ C × C

be its fiber. Then the divisor Dy := p1 + . . . + p2d is uniquely determined by
the fiber G−1(y). Moreover, if m is the number of distinct points of {p1, . . . , p2d}
and we denote by q1, . . . , qm these points, the divisor associated to y has the form
Dy =

∑m
j=1 aj qj , for some positive integers aj := multqj (Dy). Therefore we have

to prove that a1 = . . . = am.
As C×C is a connected surface, the action of the monodromy groupM (G) ⊂ S2d

of G is transitive. Hence it is not possible to distinguish any point of the fiber
G−1(y) from another. Then for any (r, s), (v, w) ∈ G−1(y) we have that
multr(Dy) = multv(Dy) and mults(Dy) = multw(Dy). In particular, we cannot
distinguish the points (r, s) and (s, r), hence multr(Dy) = mults(Dy). Thus the
divisor Dy must have the same multiplicity at any pi, i.e. there exists an integer
1 ≤ a ≤ 2d such that a = multpi

(Dy) for any i = 1, . . . , 2d. Furthermore, a must

divide 2d and the number of distinct pi’s is m = 2d
a . Finally, being y generic on P2,

we have that the number of distinct pi’s is at least 2. Hence m ≥ 2 and a ≤ d. �
The second lemma is a consequence of Abel’s theorem.

Lemma 6.9. With the notation above, for a generic point y ∈ P2 with associate di-
visor Dy = a (q1 + q2 + . . .+ qm), we have that the linear series |q1 + q2 + . . .+ qm|
is a complete grm on C with r ≥ 2. Moreover, the integer a is lower than d = degF .

Proof. Thanks to the previous lemma we are able to define the rational map
ξ : P2 ��� C(m), sending a generic point y ∈ P2 to the effective divisor q1 + q2 + . . .
+ qm ∈ C(m). As the image of y ∈ P2 depends on its fiber via the rational domi-
nant map F : C(2) ��� P2, we have that ξ is non-constant. Consider the resolution

ξ̃ : R −→ C(m) of ξ and the composition with the Abel-Jacobi map R
˜ξ−→ C(m)

u−→ J(C), where R is a rational surface. By the universal property of the Albanese
morphism, the latter map factors through the Albanese variety Alb(R) of the ra-

tional surface R, which is 0-dimensional. Hence the composition u ◦ ξ̃ is a constant
map. Being ξ non-constant, by Abel’s theorem it follows that for all the generic
points y ∈ P2, the divisors Dy are all linearly equivalent. Furthermore, as y vary
on a surface, we deduce that the complete linear series |q1 + q2 + . . .+ qm| has di-
mension r ≥ 2. To conclude, we recall that 1 ≤ a ≤ d. If a were equal to d, then
m = 2 and the linear series |q1 + q2| would have degree 2 and dimension 2. Hence
a < d. �

Finally, the third lemma is an immediate consequence of Theorem 4.3 on corre-
spondences with null trace on symmetric products of curves.

Lemma 6.10. Let C be a non-hyperelliptic curve of genus g ≥ 5 and let d =
degF < g−1. Then for a generic point y ∈ P2, we have that the points p1, . . . , p2d ∈
C in (6.1) and (6.2) are not distinct, that is, a 	= 1.

Proof. Let Dy = p1 + . . .+ p2d be the divisor associate to a generic point y ∈ P2.
By contradiction, suppose that p1, . . . , p2d are distinct points of C. Let us consider
the graph of the rational map F : C(2) ��� P2,

(6.3) Γ :=
{
(y, p+ q) ∈ P2 × C(2) |F (p+ q) = y

}
,
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which is a correspondence with null trace on P2 × C(2) of degree d = degF (cf.

Example 4.6). Let φ : C −→ Pg−1 denote the canonical map of C and let φ(D) be

the linear span of the points φ(pi) in Pg−1. Then dimφ(D) ≤ d− 1 by Theorem
4.3. Thus by the geometric version of the Riemann-Roch theorem we have

dim |Dy| = degDy − 1− dimφ(Dy) ≥ 2d− 1− (d− 1) = d =
degDy

2
.

Therefore by Clifford’s theorem we have that either C is hyperelliptic, Dy is zero
or Dy is a canonical divisor. On one hand, the curve C is assumed to be non-
hyperelliptic. On the other hand, we have 0 < d < g − 1, and hence 0 < degDy <
2g − 2. Thus we have a contradiction and the assertion follows. �

So, let us prove the main results on degree of irrationality of second symmetric
products of curves.

Proof of Theorem 1.3. Let C be a very general curve of genus g ≥ 4 and let us
prove that dr(C

(2)) ≥ g − 1. When the genus of C is 4, the assertion follows from
Proposition 6.1. Then let us assume that g ≥ 5 and let F : C(2) ��� P2 be a dom-
inant rational map of degree d = dr(C

(2)). Aiming for a contradiction we assume
d < g − 1.

Let y ∈ P2 be a generic point and let Dy be its associate divisor. Since C is a
non-hyperelliptic curve and d < g − 1, the lemmas above assure that there exists
an integer 1 < a < d such that Dy = a (q1 + q2 + . . .+ qm), where m = 2d

a and the
qj ’s are distinct points of C.

We claim that a 	= 2. If a were equal to 2, we would have m = d, and arguing
as in Step 4 of the proof of Theorem 1.5, we could assume that the fiber over the
generic y ∈ P2 has the form F−1(y) = {q1 + q2, q2 + q3, . . . , qd + q1}. Hence, by
fixing a generic point q ∈ C, we would have that for any p ∈ C, there would exist
a unique point p′ ∈ C such that F (p + q) = F (q + p′). Thus we could define an
automorphism αq : C −→ C, sending a point p ∈ C to the unique point αq(p) ∈ C
such that F (p+ q) = F (q + αq(p)). In particular, αq would not be the identity
map, and we would have a contradiction because the only automorphism of a very
general curve is the trivial one.

Then we have a ≥ 3. By Lemma 6.9, the linear series |q1 + q2 + . . .+ qm| is a
complete grm of C with r ≥ 2. Therefore the variety W r

m(C) parametrizing complete
linear series of degree m and dimension at least r is non-empty. We recall that
when C is a very general curve, the dimension of W r

m(C) equals the Brill-Noether
number ρ(g, r,m) := g − (r + 1)(g −m+ r). In particular, |q1 + q2 + . . . + qm| ∈
W 2

m(C), and hence ρ(g, 2,m) ≥ 0. It follows that

m ≥ 2g + 6

3
.

On the other hand, we have a ≥ 3 and d < g − 1. Therefore

m =
2d

a
<

2g − 2

3
,

and we get a contradiction. �
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Proof of Theorem 1.4. Thanks to Proposition 6.1, we have that dr(C
(2)) ≥ 3 and

assertion (i) follows.
As usual, let F : C(2) ��� P2 be a dominant rational map of degree d = dr(C

(2)),
and for a generic point y ∈ P2, we consider the associated divisor Dy. By Lemmas
6.8 and 6.9 we have that Dy = a (q1 + q2 + . . .+ qm), where 1 ≤ a < d and the qj ’s
are distinct points of C. Then we proceed by steps.

Step 1 (g ≥ 5 ⇒ d ≥ 4). We assume that C has genus g ≥ 5 and prove that
dr(C

(2)) ≥ 4. By Proposition 6.1 we have to check that d 	= 3. Aiming for a con-
tradiction, we suppose that d = degF = 3.

By Lemma 6.9, we have that |q1 + q2 + . . .+ qm| is a complete linear series on
C of degree m and dimension r ≥ 2. As C is non-hyperelliptic and g ≥ 5, Martens’
theorem assures that dimW r

m(C) ≤ m− 2r − 1 (see [2, p. 191]). As the number of
qj ’s is m = 2d

a = 6
a , we have that W

r
m(C) has non-negative dimension only if a = 1.

Since g ≥ 5 and d = 3, we have that d < g − 1, and hence the integer a cannot
be equal to 1 by Lemma 6.10. Therefore we have a contradiction. Thus d ≥ 4, and
assertion (ii) follows as a consequence.

Step 2 (g ≥ 6 ⇒ d ≥ 5). We prove that dr(C
(2)) ≥ 5 for any non-hyperelliptic

curve C of genus g ≥ 6. By the previous step, it suffices to see that C(2) does not
admit dominant rational maps on P2 of degree 4. By contradiction, let us assume
d = degF = 4.

The argument is the very same as Step 1. Thanks to Lemma 6.9 and Martens’
theorem, we deduce 0 ≤ dimW r

m(C) ≤ m− 2r − 1 with r ≥ 2 and m = 2d
a . Since

d = 4, it follows that a = 1, but this situation cannot occur by Lemma 6.10. Then
we have a contradiction and assertion (iii) holds.

Step 3 (g ≥ 7 ⇒ d ≥ gon(C)). Suppose that C has genus g ≥ 7 and - by contradic-

tion - assume d < gon(C). Since gon(C) ≤
[
g+3
2

]
< g − 1, Lemma 6.10 guarantees

that a ≥ 2, and hence m = 2d
a ≤ d < gon(C). On the other hand, |q1 + q2 + . . .

+ qm| is a complete linear series on C of degree m; thus m ≥ gon(C). Then we
have a contradiction.

Step 4 (g ≥ 7 ⇒ d ≥ 6). To conclude, we assume that C has genus g ≥ 7 and
prove that dr(C

(2)) ≥ 6. Thanks to Step 2, we have to show that the degree of
irrationality of C(2) is different from 5. Again we argue by contradiction and we
suppose d = degF = 5.

As above, the inequality 0 ≤ dimW r
m(C) ≤ m− 2r − 1 holds, where r ≥ 2 and

m = 10
a . In this situation, the only possibilities are a = 1 and a = 2. The integer a

must differ from 1 by Lemma 6.10. So, let us suppose that a = 2. Then m = 5 and
the above inequality implies r = 2. In particular, the linear series |q1+ . . .+ q5| is a
complete g25 on C. As m is prime, the map C −→ P2 defined by the g25 is birational
onto a non-degenerate plane quintic whose arithmetic genus is 6. Hence g ≤ 6, a
contradiction.

Thus assertion (iv) follows from Steps 3 and 4. �

Proof of Theorem 1.2. Let C be a hyperelliptic curve of genus g ≥ 4 and let us
prove that dr(C

(2)) ≥ 4. From Propositions 1.1 and 6.1 we deduce 3 ≤ dr(C
(2)) ≤ 4.

Aiming for a contradiction, we suppose that there exists a dominant rational map
F : C(2) ��� P2 of degree d = 3.
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Let y ∈ P2 be a generic point, with fiber F−1(y) = {p1 + p2, p3 + p4, p5 + p6} and
associated divisor Dy = p1 + . . .+ p6. Let G : C × C ��� P2 be the map of degree
6 defined as G(p, q) := F (p+ q), and let G−1(y) = {(p1, p2), (p2, p1), . . . , (p6, p5)}
be its fiber over y. By arguing as in the proof of Lemma 6.8, we have that the
monodromy groups M(F ) ⊂ S3 and M(G) ⊂ S6 act transitively on F−1(y) and
G−1(y) respectively, since C(2) and C × C are connected surfaces. It follows that
there is no way to distinguish either the points of the fiber F−1(y) or those of
G−1(y) by some property varying continuously as y varies on P2. Thus we cannot
distinguish the pi’s as well by such a property.

Now, let f : C −→ P1 be g12 on C and let ι : C −→ C be the induced hyperelliptic
involution. We recall that the canonical map φ : C −→ Pg−1 is the composition of
the double covering f and the Veronese map νg−1 : P

1 −→ Pg−1 (see e.g. [16,
Proposition 2.2, p. 204]). Moreover, the image φ(C) ⊂ Pg−1 is set theoretically the
rational normal curve of degree g − 1 and the covering φ : C −→ φ(C) has degree
two. Then two distinct points p, q ∈ C have the same image if and only if they
are conjugated under the hyperelliptic involution. Since y ∈ P2 is generic, we can
assume - without loss of generality - that p1 and p2 are not conjugate under the
hyperelliptic involution, that is, φ(p1) 	= φ(p2). As the points of the F−1(y) are
indinstinguishable, it follows that φ(p3) 	= φ(p4) and φ(p5) 	= φ(p6) as well.

Consider the correspondence Γ :=
{
(y, p+ q) ∈ P2 × C(2) |F (p+ q) = y

}
defined

as the graph of F . Since Γ ⊂ P2 × C(2) has null trace and degree 3 (cf. Example
4.6), Theorem 4.3 assures that the points φ(p1), . . . , φ(p6) lie on a plane π ⊂ Pg−1.
With φ(C) being a rational normal curve, we have that the φ(pi)’s consist of at
most three distinct points.

Suppose that they are exactly three. Then the φ(pi)’s are not collinear, because
they lie on φ(C). Consider the lines

l1 := φ(p1)φ(p2), l2 := φ(p3)φ(p4), l3 := φ(p5)φ(p6) ⊂ π

and notice that each of them correspond to a point of F−1(y). Then we cannot
distinguish them, and hence l1, l2 and l3 are all distinct. Moreover, they must
intersect at a same point p ∈ π (cf. Example 3.5). Furthermore, each φ(pi) has
exactly two preimages on C because of the monodromy of G. Then we can assume
- without loss of generality - that p 	= φ(p1) and φ(p1) = φ(p3). Thus l1 and l2 must
coincide, a contradiction.

So, let us suppose that the φ(pi)’s consist of two distinct points. By Lemmas
6.8 and 6.9 there exists a = 1, 2 such that the divisor associated to y has the form
Dy = a(q1 + . . .+ qm), where m = 2d

a and the qj ’s are distinct points of C. If a = 2
we have m = 3. Hence there are points q1, q2 mapping on φ(p1) and q3 on φ(p2),
but this situation cannot occur because we are distinguishing points. On the other
hand, suppose that a = 1 and m = 6. As both φ(p1) and φ(p2) have two preimages
on C, the qj ’s must be at most four distinct points. Thus we have a contradiction,
and the assertion of Theorem 1.2 holds. �

7. Bounds on the ample cone of second symmetric products

of curves

Let C be a smooth complex projective curve of genus g and let us assume that
C is very general in the moduli space Mg. In this section we apply Theorem 1.5 to

the problem of describing the cone Nef(C(2))R of nef numerical equivalence classes
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of R-divisor, and we prove Theorem 1.7. To this aim we first recall some basic facts
on this topic.

Given a point p ∈ C, we define the divisors on C(2) given by Cp := {p+ q | q ∈ C}
and Δ := {q + q | q ∈ C}. Let x and δ denote their numerical equivalence classes
in the Néron-Severi group N1(C(2)). The vector space N1(C(2))R of numerical
classes of R-divisors is spanned by the classes x and δ

2 (cf. [2, p. 359]), where

x2 = 1,
(
δ
2

)2
= 1− g and

(
x · δ

2

)
= 1. Then we deduce the formula governing the

intersection on the Néron-Severi space, that is,(
(a+ b)x− b

δ

2

)
·
(
(c+ d)x− d

δ

2

)
= ac− bdg.

Since Nef(C(2))R is a two-dimensional convex cone, it is completely determined
by its two boundary rays. The first one is the dual ray of the diagonal via intersec-
tion pairing, and it is spanned by the class (g − 1)x− δ

2 . The other ray is spanned

by the class (τ (C) + 1)x− δ
2 , where τ (C) is the real number defined as

τ (C) := inf

{
t > 0

∣∣∣∣ (t+ 1)x− δ

2
is ample

}
.

Thus the problem of describing the nef cone Nef(C(2))R is reduced to compute
τ (C). Clearly, as the self-intersection of an ample divisor is positive, it follows that
τ (C) ≥ √

g.

Remark 7.1. We note that when the genus of C is g ≤ 4, the problem is totally
understood (for details see [4, 13, 19]). On the other hand, there is an important
conjecture - due to Kouvidakis - governing the case g ≥ 5. It asserts that τ (C) =√
g, i.e. the nef cone is as large as possible. Such a conjecture has been proved in

[4, 13] when the genus g is a perfect square, whereas the problem is still open in
the other cases.

We recall further that when the genus of C is g ≥ 9, Kouvidakis’ conjecture is
implied by Nagata’s on the Seshadri constant at g generic points in P2, and this
fact leads to several bounds on τ (C) (see for instance [19]). On the other hand, the
best previously known bounds for generic curves of genus 5 ≤ g ≤ 8 are those of [3,
Theorem 1].

Moreover, we would like to note that the bounds of [3, Theorem 1] are τ5 = 9
4 ,

τ6 = 37
15 , τ7 = 189

71 and τ8 = 54
19 . Since 32

13 < 37
15 ,

77
29 < 189

71 and 17
6 < 54

19 , we deduce
that Theorem 1.7 does provide an improvement of the bounds on the ample cone
of C(2) when 6 ≤ g ≤ 8.

As we anticipated, the argument to prove Theorem 1.7 is the very same as [3,
Theorem 1]. Then let us recall two preliminary results involved in the proof.

Given a smooth complex projective variety X and a nef class L ∈ N1(X)R, we
define the Seshadri constant of L at a point y ∈ X as the real number

ε (y;X,L) := inf
E

(L · E)

multyE
,

where the infimum is taken over the irreducible curves E passing through y. The
following holds (see [19, Theorem 1.2]).
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Theorem 7.2. Let D be a smooth curve of genus g − 1. Let a, b be two positive
real numbers such that a

b ≥ τ (D) and for a very general point y ∈ D(2)

ε

(
y;D(2), (a+ b)x− b

δ

2

)
≥ b.

If C is a very general curve of genus g, then τ (C) ≤ a
b .

Moreover, we need the following lemma (cf. [3, Lemma 3] and [12, Theorem A]).

Lemma 7.3. Let X be a smooth complex projective surface. Let T be a smooth
variety and consider a family {yt ∈ Et}t∈T consisting of a curve Et ⊂ Y through
a very general point yt ∈ X such that multyt

Et ≥ m for any t ∈ T and for some
m ≥ 2. If the central fiber E0 is a reduced irreducible curve and the family is
non-trivial, then

E2
0 ≥ m(m− 1) + gon(E0).

Proof of Theorem 1.7. Assume that g = 6 and let us prove that τ (C) ≤ 32
13 . To

this aim, consider a very general curve D of genus g(D) = g − 1 = 5, together with
its second symmetric product D(2). Let a = 32, b = 13 and consider the numerical
equivalence class

(7.1) L := (a+ b)x− b
δ

2
∈ N1(D(2)),

which is nef by [3, Theorem 1]. Thanks to Theorem 7.2 it suffices to prove that
the Seshadri constant of L at a generic point y ∈ D(2) is greater than or equal to b,
i.e. there is not a reduced irreducible curve E ⊂ D(2) passing through y such that
(L · E)/multyE < b.

Let F be the set of pairs (F, z) such that F ⊂ D(2) is a reduced irreducible curve,
z ∈ F is a point and (L · F )/multzF < 13. Such a set consists of at most countably
many algebraic families and y is generic on D(2), thus we have to show that each
of these families is discrete (cf. [7, Section 2]).

We argue by contradiction and we assume that there exists a family
E = {(yt ∈ Et)}t∈T such that for any t ∈ T , the curve Et ⊂ D(2) is reduced and
irreducible, the point yt is very general on D(2) and

(7.2)
(L · Et)

multyt
Et

< b = 13.

We claim that for any t ∈ T , we have

(7.3) (L · Et) ≥ b.

Let (n+ γ)x− γ δ
2 ∈ N1(D(2)) be the numerical equivalence class of Et. Since the

class x is ample, we have (x · Et) = n > 0. With (L · Et) = an− bγg, we then have
that (7.3) holds when γ ≤ 0.

So, let us assume γ > 0. Since E is a family of curves covering D(2), we have
(L·Et) ≥ 0 (cf. [19, Lemma 2.2]). Furthermore, D(2) is a non-fibered surface, hence
there are at most finitely many irreducible curves of zero self-intersection and nu-
merical class (n+γ)x−γ(δ/2). Therefore we can assume E2

t = n2 − (g − 1)γ2 > 0,
that is, n ≥ γ

√
g − 1 + 1. Notice that a ≥ b

√
g − 1; thus (L · Et) = an− (g − 1)bγ

> b
√
g − 1

(
γ
√
g − 1 + 1

)
− (g − 1)bγ > b and the claim follows.

By (7.2) and (7.3) we deduce that multyt
Et > (L · Et)/b ≥ 1 for any t ∈ T . As

Et is a reduced curve, we have that multzEt = 1 for any generic point z ∈ Et.
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Hence E = {(yt ∈ Et)}t∈T is a non-trivial family. Without loss of generality, let us
assume that the central fiber is such that

m := multx0
E0 ≤ multxt

Et

for any t ∈ T . Thanks to Lemma 7.3 we have that the curve E0 has self-intersection
E2

0 ≥ m(m− 1) + gon(E0). Furthermore, Theorem 1.5 assures that gon(E0)

≥ gon(D), where gon(D) =
[
g(D)+3

2

]
because D is assumed to be very general

in Mg−1. Hence

(7.4) E2
0 ≥ m(m− 1) +

[
(g − 1) + 3

2

]
= m(m− 1) + 4.

Finally, inequality (7.2) leads to (L · E0) ≤ bm− 1. Thus by the Hodge Index
Theorem we have

(7.5) m(m− 1) + 4 ≤ E2
0 ≤ (L · E0)

2

L2
≤ (13m− 1)2

179
,

but this is impossible. Hence we get a contradiction, and we proved that τ (C) ≤ 32
13

for any generic curve of genus g = 6.
Now, let us assume that C has genus g = 7 and let D be a very general curve

of genus g(D) = g − 1 = 6. In order to follow the above argument, we set a = 77
and b = 29. We just proved that τ (D) ≤ 32

13 , hence the class L defined in (7.1) is

still nef. Then we can argue as above and we have E2
0 ≥ m(m− 1) + gon(E0). We

recall that E0 ⊂ D(2) is a singular reduced irreducible curve lying on the second
symmetric product of the genus six curve D. Therefore E0 is not isomorphic to
D, and gon(E0) ≥ gon(D) + 1 by Theorem 1.5. Then we obtain the analogue of
inequality (7.4), that is, E2

0 ≥ m(m− 1) + 5. Thus (7.5) becomes

m(m− 1) + 5 ≤ E2
0 ≤ (L · E0)

2

L2
≤ (29m− 1)2

883
,

which is still impossible. Then we have that τ (C) ≤ 77
29 for any generic curve of

genus g = 7.
Analogously, let g = 8 and consider a generic curve D of genus g(D) = g − 1 = 7.

Since 17
6 > 77

29 ≥ τ (D), we can argue as above by setting a = 17 and b = 6. Then

we have E2
0 ≥ m(m− 1) + gon(E0), where gon(E0) ≥ gon(D) + 1 = 6. Therefore

m(m− 1) + 6 ≤ E2
0 ≤ (L · E0)

2

L2
≤ (6m− 1)2

37
,

which still leads to a contradiction. Thus τ (C) ≤ 17
6 for any very general curve of

genus g = 8, and the proof ends. �
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17. T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weierstrass canonical divisor, J.
Algebra, 77(1) (1982), 62–73. MR665164 (83k:14027)

18. D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ., 9(2) (1969),
195–204. MR0249428 (40:2673)

19. J. Ross, Seshadri constants on symmetric products of curves, Math. Res. Lett., 14(1) (2007),
63–75. MR2289620 (2008a:14043)

20. H. Tokunaga and H. Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra, 174(3)
(1995), 1111–1121. MR1337188 (96e:14039)

21. H. Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra, 167(3) (1994), 634–
640. MR1287064 (95g:14039)

22. H. Yoshihara, A note on the inequality of degrees of irrationalities of algebraic surfaces, J.
Algebra, 207(1) (1998), 272–275. MR1643098 (99k:14058)
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