Sign changes of the error term in Weyl’s law for Heisenberg manifolds
HTML articles powered by AMS MathViewer
- by Kai-Man Tsang and Wenguang Zhai
- Trans. Amer. Math. Soc. 364 (2012), 2647-2666
- DOI: https://doi.org/10.1090/S0002-9947-2012-05437-7
- Published electronically: January 19, 2012
- PDF | Request permission
Abstract:
Let $R(T)$ be the error term in Weyl’s law for the $(2l+1)$-dimen- sional Heisenberg manifold $(H_l/\Gamma , g_l)$. In this paper, several results on the sign changes and odd moments of $R(t)$ are proved. In particular, it is proved that for some sufficiently large constant $c$, $R(t)$ changes sign in the interval $[T, T + c \sqrt T]$ for all large $T$. Moreover, for a small constant $c_1$ there exist infinitely many subintervals in $[T, 2T]$ of length $c_1 \sqrt T \log ^{-5} T$ such that $\pm R(t)>c_1t^{l - 1/4}$ holds on each of these subintervals.References
- V. Bentkus and F. Götze, Lattice point problems and distribution of values of quadratic forms, Ann. of Math. (2) 150 (1999), no. 3, 977–1027. MR 1740988, DOI 10.2307/121060
- Pierre H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), no. 3, 249–276. MR 455055, DOI 10.1007/BF02028444
- Pavel Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), no. 3, 461–481. MR 1181309, DOI 10.1215/S0012-7094-92-06718-4
- Derrick Chung, Yiannis N. Petridis, and John A. Toth, The remainder in Weyl’s law for Heisenberg manifolds. II, Proceedings of the Session in Analytic Number Theory and Diophantine Equations, Bonner Math. Schriften, vol. 360, Univ. Bonn, Bonn, 2003, pp. 16. MR 2075620
- Harald Cramér, Über zwei Sätze des Herrn G. H. Hardy, Math. Z. 15 (1922), no. 1, 201–210 (German). MR 1544568, DOI 10.1007/BF01494394
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- François Fricker, Einführung in die Gitterpunktlehre, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series], vol. 73, Birkhäuser Verlag, Basel-Boston, Mass., 1982 (German). MR 673938
- A. Good, Ein $\Omega$-Resultat für das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie, Invent. Math. 41 (1977), no. 3, 233–251 (German). MR 460253, DOI 10.1007/BF01403049
- Carolyn S. Gordon and Edward N. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986), no. 2, 253–271. MR 837583, DOI 10.1307/mmj/1029003354
- Friedrich Götze, Lattice point problems and values of quadratic forms, Invent. Math. 157 (2004), no. 1, 195–226. MR 2135188, DOI 10.1007/s00222-004-0366-3
- G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J Math. 46(1915), 263-283.
- D. R. Heath-Brown and K. Tsang, Sign changes of $E(T)$, $\Delta (x)$, and $P(x)$, J. Number Theory 49 (1994), no. 1, 73–83. MR 1295953, DOI 10.1006/jnth.1994.1081
- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 609014, DOI 10.1007/BF02391913
- M. N. Huxley, Exponential sums and lattice points. III, Proc. London Math. Soc. (3) 87 (2003), no. 3, 591–609. MR 2005876, DOI 10.1112/S0024611503014485
- Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- A. Ivić and Wenguang Zhai, Higher moments of the error term in the divisor problem, to appear in Mat. Zametki.
- Victor Ivriĭ, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Mathematics, vol. 1100, Springer-Verlag, Berlin, 1984. MR 771297, DOI 10.1007/BFb0072205
- Matti Jutila, On the divisor problem for short intervals, Ann. Univ. Turku. Ser. A I 186 (1984), 23–30. Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday. MR 748516
- M. Khosravi, Third moment of the remainder error term in Weyl’s law for Heisenberg manifolds, arXiv: 0711.0073.
- Mahta Khosravi and Yiannis N. Petridis, The remainder in Weyl’s law for $n$-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3561–3571. MR 2163591, DOI 10.1090/S0002-9939-05-08155-4
- Mahta Khosravi and John A. Toth, Cramér’s formula for Heisenberg manifolds, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 7, 2489–2520 (English, with English and French summaries). MR 2207391
- Yuk-Kam Lau and Kai-Man Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 2, 277–287. MR 2475967, DOI 10.1017/S0305004108001874
- W. G. Nowak, A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, arXiv: 0809.3924.
- W. G. Nowak, A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds.II, arXiv: 0810.2235.
- Yiannis N. Petridis and John A. Toth, The remainder in Weyl’s law for Heisenberg manifolds, J. Differential Geom. 60 (2002), no. 3, 455–483. MR 1950173
- K. Soundararajan, Omega results for the divisor and circle problems, Int. Math. Res. Not. 36 (2003), 1987–1998. MR 1991181, DOI 10.1155/S1073792803130309
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Kai Man Tsang, Higher-power moments of $\Delta (x),\;E(t)$ and $P(x)$, Proc. London Math. Soc. (3) 65 (1992), no. 1, 65–84. MR 1162488, DOI 10.1112/plms/s3-65.1.65
- A. V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold, Comm. Partial Differential Equations 15 (1990), no. 11, 1509–1563. MR 1079602, DOI 10.1080/03605309908820736
- Wenguang Zhai, On higher-power moments of $\Delta (x)$. II, Acta Arith. 114 (2004), no. 1, 35–54. MR 2067871, DOI 10.4064/aa114-1-3
- Wenguang Zhai, On higher-power moments of $\Delta (x)$. III, Acta Arith. 118 (2005), no. 3, 263–281. MR 2168766, DOI 10.4064/aa118-3-3
- Wenguang Zhai, On the error term in Weyl’s law for Heisenberg manifolds, Acta Arith. 134 (2008), no. 3, 219–257. MR 2438847, DOI 10.4064/aa134-3-3
Bibliographic Information
- Kai-Man Tsang
- Affiliation: Department of Mathematics, University of Hong Kong, Pokfulam road, Hong Kong
- Email: kmtsang@maths.hku.hk
- Wenguang Zhai
- Affiliation: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People’s Republic of China
- Email: zhaiwg@hotmail.com
- Received by editor(s): December 5, 2009
- Received by editor(s) in revised form: July 24, 2010
- Published electronically: January 19, 2012
- Additional Notes: The work of the second author was supported by National Natural Science Foundation of China (Grant No. 10771127) and Mathematical Tianyuan Foundation (No. 10826028).
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 2647-2666
- MSC (2010): Primary 11N37, 35P20, 58J50
- DOI: https://doi.org/10.1090/S0002-9947-2012-05437-7
- MathSciNet review: 2888223