Dirac operators on cobordisms: Degenerations and surgery
HTML articles powered by AMS MathViewer
- by Daniel F. Cibotaru and Liviu I. Nicolaescu
- Trans. Amer. Math. Soc. 364 (2012), 3185-3216
- DOI: https://doi.org/10.1090/S0002-9947-2012-05476-6
- Published electronically: February 8, 2012
- PDF | Request permission
Abstract:
We investigate the Dolbeault operator on a pair of pants, i.e., an elementary cobordism between a circle and the disjoint union of two circles. This operator induces a canonical selfadjoint Dirac operator $D_t$ on each regular level set $C_t$ of a fixed Morse function defining this cobordism. We show that as we approach the critical level set $C_0$ from above and from below these operators converge in the gap topology to (different) selfadjoint operators $D_\pm$ that we describe explicitly. We also relate the Atiyah-Patodi-Singer index of the Dolbeault operator on the cobordism to the spectral flows of the operators $D_t$ on the complement of $C_0$ and the Kashiwara-Wall index of a triplet of finite dimensional Lagrangian spaces canonically determined by $C_0$.References
- V. I. Arnol′d, The complex Lagrangian Grassmannian, Funktsional. Anal. i Prilozhen. 34 (2000), no. 3, 63–65 (Russian); English transl., Funct. Anal. Appl. 34 (2000), no. 3, 208–210. MR 1802319, DOI 10.1007/BF02482410
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99. MR 397799, DOI 10.1017/S0305004100052105
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Sylvain E. Cappell, Ronnie Lee, and Edward Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), no. 2, 121–186. MR 1263126, DOI 10.1002/cpa.3160470202
- D.F. Cibotaru: Localization formulæ in odd $K$-theory, arXiv: 0901.2563.
- R. E. Edwards, Functional analysis, Dover Publications, Inc., New York, 1995. Theory and applications; Corrected reprint of the 1965 original. MR 1320261
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- Peter B. Gilkey, On the index of geometrical operators for Riemannian manifolds with boundary, Adv. Math. 102 (1993), no. 2, 129–183. MR 1252030, DOI 10.1006/aima.1993.1063
- Gerd Grubb, Heat operator trace expansions and index for general Atiyah-Patodi-Singer boundary problems, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2031–2077. MR 1194749, DOI 10.1080/03605309208820913
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Paul Kirk and Matthias Lesch, The $\eta$-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), no. 4, 553–629. MR 2044028, DOI 10.1515/form.2004.027
- Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043, DOI 10.1017/CBO9780511543111
- Liviu I. Nicolaescu, Lectures on the geometry of manifolds, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1435504, DOI 10.1142/9789814261012
- Liviu I. Nicolaescu, Schubert calculus on the Grassmannian of Hermitian Lagrangian spaces, Adv. Math. 224 (2010), no. 6, 2361–2434. MR 2652210, DOI 10.1016/j.aim.2010.02.003
- John Oprea, Differential geometry and its applications, 2nd ed., Classroom Resource Materials Series, Mathematical Association of America, Washington, DC, 2007. MR 2327126
- R. Seeley and I. M. Singer, Extending $\overline \partial$ to singular Riemann surfaces, J. Geom. Phys. 5 (1988), no. 1, 121–136. MR 1027535, DOI 10.1016/0393-0440(88)90015-0
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
- C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269–274. MR 246311, DOI 10.1007/BF01404310
Bibliographic Information
- Daniel F. Cibotaru
- Affiliation: Instituto de Matemática, Universidade Federal Fluminense, Rua Maria Santos Braga, 24020-140 Niterói, RJ-Brasil
- Email: daniel@mat.uff.br
- Liviu I. Nicolaescu
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556-4618
- MR Author ID: 242770
- Email: nicolaescu.1@nd.edu
- Received by editor(s): February 9, 2010
- Received by editor(s) in revised form: September 22, 2010
- Published electronically: February 8, 2012
- Additional Notes: The second author was partially supported by NSF grant DMS-1005745.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 3185-3216
- MSC (2010): Primary 58J20, 58J28, 58J30, 58J32, 53B20, 35B25
- DOI: https://doi.org/10.1090/S0002-9947-2012-05476-6
- MathSciNet review: 2888242