The derivative of an incoherent Eisenstein series
HTML articles powered by AMS MathViewer
- by Hui Xue
- Trans. Amer. Math. Soc. 364 (2012), 3311-3327
- DOI: https://doi.org/10.1090/S0002-9947-2012-05589-9
- Published electronically: February 8, 2012
- PDF | Request permission
Abstract:
In this paper we study the derivative at the center of symmetry of an incoherent Eisenstein series which is associated to an imaginary quadratic field. We show that each nonconstant Fourier coefficient of the derivative can be expressed as the degree of certain zero cycles on a moduli scheme. This result is a generalization of the work by Kudla-Rapoport-Yang.References
- Jan Hendrik Bruinier and Tonghai Yang, Faltings heights of CM cycles and derivatives of $L$-functions, Invent. Math. 177 (2009), no. 3, 631–681. MR 2534103, DOI 10.1007/s00222-009-0192-8
- Pierre Colmez, Périodes des variétés abéliennes à multiplication complexe, Ann. of Math. (2) 138 (1993), no. 3, 625–683 (French). MR 1247996, DOI 10.2307/2946559
- Benedict H. Gross, On canonical and quasicanonical liftings, Invent. Math. 84 (1986), no. 2, 321–326. MR 833193, DOI 10.1007/BF01388810
- Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR 894322
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- Stephen S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2) 146 (1997), no. 3, 545–646. MR 1491448, DOI 10.2307/2952456
- Stephen S. Kudla, Derivatives of Siegel Eisenstein series and arithmetic, Number theory and related topics (Seoul, 1998) Yonsei Univ. Inst. Math. Sci., Seoul, 2000, pp. 53–78. MR 1943665
- Stephen S. Kudla and Michael Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. Reine Angew. Math. 515 (1999), 155–244. MR 1717613, DOI 10.1515/crll.1999.076
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, On the derivative of an Eisenstein series of weight one, Internat. Math. Res. Notices 7 (1999), 347–385. MR 1683308, DOI 10.1155/S1073792899000185
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Derivatives of Eisenstein series and Faltings heights, Compos. Math. 140 (2004), no. 4, 887–951. MR 2059224, DOI 10.1112/S0010437X03000459
- Alexandru A. Popa, Central values of Rankin $L$-series over real quadratic fields, Compos. Math. 142 (2006), no. 4, 811–866. MR 2249532, DOI 10.1112/S0010437X06002259
- Lucien Szpiro, Degrés, intersections, hauteurs, Astérisque 127 (1985), 11–28 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801917
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures Appl. (9) 59 (1980), no. 1, 1–132 (French). MR 577010
- Hui Xue, Central values of $L$-functions over CM fields, J. Number Theory 122 (2007), no. 2, 342–378. MR 2292260, DOI 10.1016/j.jnt.2006.05.010
Bibliographic Information
- Hui Xue
- Affiliation: Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634
- Email: huixue@clemson.edu
- Received by editor(s): September 20, 2010
- Received by editor(s) in revised form: March 28, 2011
- Published electronically: February 8, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 3311-3327
- MSC (2010): Primary 11F30, 11F37, 11G40
- DOI: https://doi.org/10.1090/S0002-9947-2012-05589-9
- MathSciNet review: 2888247