Characteristic classes and existence of singular maps
HTML articles powered by AMS MathViewer
- by Boldizsár Kalmár and Tamás Terpai
- Trans. Amer. Math. Soc. 364 (2012), 3751-3779
- DOI: https://doi.org/10.1090/S0002-9947-2012-05544-9
- Published electronically: February 17, 2012
- PDF | Request permission
Abstract:
The existence of a corank one map of negative codimension puts strong restrictions on the topology of the source manifold. It implies many vanishing theorems on characteristic classes and often even vanishing of the cobordism class of the source manifold. Most of our results lie deeper than just vanishing of Thom polynomials of the higher singularities. We blow up the singular map along the singular set and then perturb the arising nongeneric corank one map.References
- Yoshifumi Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985), no. 3, 471–487. MR 792988, DOI 10.2969/jmsj/03730471
- Yoshifumi Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985), no. 3, 471–487. MR 792988, DOI 10.2969/jmsj/03730471
- Yoshifumi Ando, Folding maps and the surgery theory on manifolds, J. Math. Soc. Japan 53 (2001), no. 2, 357–382. MR 1815139, DOI 10.2969/jmsj/05320357
- Yoshifumi Ando, Folding maps and the surgery theory on manifolds, J. Math. Soc. Japan 53 (2001), no. 2, 357–382. MR 1815139, DOI 10.2969/jmsj/05320357
- Yoshifumi Ando, A homotopy principle for maps with prescribed Thom-Boardman singularities, Trans. Amer. Math. Soc. 359 (2007), no. 2, 489–515. MR 2255183, DOI 10.1090/S0002-9947-06-04326-1
- M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125–132. MR 145549, DOI 10.1016/0040-9383(65)90020-0
- Augustin Banyaga and David E. Hurtubise, A proof of the Morse-Bott lemma, Expo. Math. 22 (2004), no. 4, 365–373. MR 2075744, DOI 10.1016/S0723-0869(04)80014-8
- J. M. Boardman, Singularities of differentiable maps, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 21–57. MR 231390
- Daniel S. Chess, A note on the classes $[S^{k}_{1}(f)]$, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 221–224. MR 713061, DOI 10.1090/pspum/040.1/713061
- Albrecht Dold, Erzeugende der Thomschen Algebra ${\mathfrak {N}}$, Math. Z. 65 (1956), 25–35 (German). MR 79269, DOI 10.1007/BF01473868
- A. M. Gabrièlov, Combinatorial formulas for Pontrjagin classes and $\textrm {GL}$-invariant chains, Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, 1–7, 95 (Russian). MR 498893
- J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure App. Math. 30 (1899), 150–156.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
- Hansjörg Geiges and Federica Pasquotto, A formula for the Chern classes of symplectic blow-ups, J. Lond. Math. Soc. (2) 76 (2007), no. 2, 313–330. MR 2363418, DOI 10.1112/jlms/jdm061
- G. Mikhalkin, Blowup equivalence of smooth closed manifolds, Topology 36 (1997), no. 1, 287–299. MR 1410476, DOI 10.1016/0040-9383(95)00062-3
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554
- Toru Ohmoto, Osamu Saeki, and Kazuhiro Sakuma, Self-intersection class for singularities and its application to fold maps, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3825–3838. MR 1990176, DOI 10.1090/S0002-9947-03-03345-2
- Piotr Pragacz, Thom polynomials and Schur functions: towards the singularities $A_i(-)$, Real and complex singularities, Contemp. Math., vol. 459, Amer. Math. Soc., Providence, RI, 2008, pp. 165–178. MR 2444400, DOI 10.1090/conm/459/08969
- V. A. Rohlin, Intrinsic definition of Pontryagin’s characteristic cycles, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 449–452 (Russian). MR 0050276
- F. Ronga, Le calcul de la classe de cohomologie entière duale à $\overline \sum {}^k$, Proceedings of Liverpool Singularities—Symposium, I (1969/70), Lecture Notes in Mathematics, Vol. 192, Springer, Berlin, 1971, pp. 313–315 (French). MR 0293648
- F. Ronga, Le calcul des classes duales aux singularités de Boardman d’ordre deux, Comment. Math. Helv. 47 (1972), 15–35 (French). MR 309129, DOI 10.1007/BF02566786
- Rustam Sadykov, The Chess conjecture, Algebr. Geom. Topol. 3 (2003), 777–789. MR 1997337, DOI 10.2140/agt.2003.3.777
- Rustam Sadykov, Osamu Saeki, and Kazuhiro Sakuma, Obstructions to the existence of fold maps, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 338–354. MR 2602999, DOI 10.1112/jlms/jdp072
- Osamu Saeki, Notes on the topology of folds, J. Math. Soc. Japan 44 (1992), no. 3, 551–566. MR 1167382, DOI 10.2969/jmsj/04430551
- Osamu Saeki and Kazuhiro Sakuma, Maps with only Morin singularities and the Hopf invariant one problem, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 501–511. MR 1636580, DOI 10.1017/S0305004197002478
- C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292–311. MR 120654, DOI 10.2307/1970136
Bibliographic Information
- Boldizsár Kalmár
- Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
- Email: kalmar.boldizsar@renyi.mta.hu
- Tamás Terpai
- Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
- Email: terpai@math.elte.hu
- Received by editor(s): June 7, 2010
- Received by editor(s) in revised form: December 15, 2010, and January 7, 2011
- Published electronically: February 17, 2012
- Additional Notes: The first author was partially supported by the Magyary Zoltán Postdoctoral Fellowship and OTKA grant NK81203.
The second author was supported by OTKA grant NK81203. - © Copyright 2012 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 3751-3779
- MSC (2010): Primary 57R45; Secondary 57R75, 57R25, 57R20
- DOI: https://doi.org/10.1090/S0002-9947-2012-05544-9
- MathSciNet review: 2901233