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LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS I

TARYN C. FLOCK AND ROBERT S. STRICHARTZ

Abstract. We describe families of Laplacians on Julia Sets Jc for quadratic
polynomials P (z) = z2 + c in the spirit of Kigami’s construction of Laplacians
on p.c.f. self-similar fractals. We consider an infinite family of Julia sets for c
in the interior of a bulb in the Mandelbrot set that includes the basilica and
the Douady rabbit. We use the external ray parametrization of the Julia set
which represents the Julia set as a circle with some points identified. There is
a one-dimensional space of P -invariant energies that arises from the standard
energy on the circle, but we show surprisingly that there are higher dimensional
spaces of energies invariant under iterates of P . There are two natural measures
associated with the dynamics of P on J , the equilibrium measure μ, which

is P -invariant but ignores the geometric aspects of the P action, and the
conformal measure ν, which is not P -invariant but does transform according
to a power of the Jacobian of the mapping. The P -invariant Laplacian Δμ

is built from the P -invariant energy and the measure μ. This Laplacian will
depend only on the topological type of J (so for quasicircles, it just gives the
usual Laplacian on the circle). The conformal Laplacian Δν is built from the
P -invariant energy and the measure ν.

We describe numerical procedures to approximate the eigenvalues and
eigenfunctions of the Laplacians Δμ and Δν and present the computational
results. For Δμ we identify a 4-element (Z2⊕Z2) group of symmetries. In the
case of the basilica the symmetries are generated by horizontal and vertical
reflections, but in the case of the rabbit and other Julia sets the symmetries
are more hidden (only z → −z is obvious). Based on these symmetries we are
able to classify eigenfunctions and explain the computational data.

1. Introduction

Analysis on fractals has been widely developed (see [Bar98], [Kig01], [Str06] and
the references therein for a sample). The approach pioneered by Kigami has at
its core a Laplacian that is built from energy and measure. Most of the examples
studied so far have been linear fractals, such as the Sierpinski gasket, Sierpinski
carpet, and Vicsek set. Recently [RT09] extended Kigami’s approach to the basilica
Julia sets. The Julia set Jc for the quadratic polynomials P (z) = z2 + c with c
in the Mandelbrot set is a well studied class of nonlinear fractals that are both
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connected and finitely ramified (they may be disconnected by removing a finite
number of points) and so fit nicely into the Kigami paradigm:

(i) Approximate the fractal by a sequence of graphs Γm with vertices Vm and
edge relation x∼

m
y. We want the vertices to be nested,

(1.1) V0 ⊆ V1 ⊆ V2 ⊆ ...

with the union

(1.2) V∗ =

∞⋃
m=0

Vm,

a dense subset of the fractal.
(ii) On each graph Γm construct an energy

(1.3) Em(u, v) =
∑
x∼
m

y

cm(x, y)(u(x)− u(y))(v(x)− v(y)).

The conductances cm(x, y) are positive and may be interpreted as reciprocals
of resistances, where the graph is viewed as an electric network with resistors
of resistance 1/cm(x, y) connecting the nodes x, y. For any function u defined
on Vm, its harmonic extension ũ to Vm+1 is defined to be the extension that
minimizes energy:

(1.4) Em+1(ũ, ũ) ≤ Em+1(u, u),

where ũ restricted to Vm equals u. We want to have the identity

(1.5) Em+1(ũ, ũ) = Em(u, u).

It follows that for any function u defined on V∗ we have increasing energy:

(1.6) E0(u, u) ≤ E1(u, u) ≤ E2(u, u) ≤ ...,

and so the definition

(1.7) E(u, u) = lim
m→∞

Em(u, u)

always makes sense. If we define the domain dom E to be the functions with
E(u, u) < ∞, then

(1.8) E(u, v) = lim
m→∞

Em(u, v)

is always finite for u, v ∈ dom E .
(iii) We choose a measure μ on the fractal and define a Laplacian Δμ by the weak

formulation

(1.9) −E(u, v) =
∫

(Δμu)vdμ for v ∈ dom E .

There is also a pointwise formula for Δμu on V∗ as a limit of graph Laplacians

(1.10) Δμu(x) = lim
m→∞

1∫
ψ
(n)
x

Δmu(x),

where

(1.11) Δmu(x) =
∑
y∼
m
x

cm(x, y)(u(y)− u(x))

and ψ
(m)
x is the harmonic extension of the function y → δxy on Vm.
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In the context of p.c.f. self-similar fractals, the energy is taken to have a self-similar
structure. In the context of Julia sets we want to relate the energy to the dynamics
of the action of P on J . The simplest requirement is P -invariance:

(1.12) E(u ◦ P, v ◦ P ) = c1E(u, v)

(implicit in this is the statement that u ∈ dom E implies u ◦ P ∈ dom E). A
somewhat weaker requirement is

(1.13) E(u ◦ P (k), v ◦ P (k)) = ckE(u, v)

for some fixed k. Obviously (1.12) implies (1.13) for all k. In the case of the unit
circle (c = 0), all solutions of (1.13) are multiples of the standard energy

(1.14) E(u, v) =
∫ 2π

0

u′(θ)v′(θ)dθ,

and so (1.13) implies (1.12). We will see in section 3 that in general there are more
solutions to (1.13) than to (1.12).

We use the method of external rays developed by Doaudy and Hubbard [DH84]
to parameterize the Julia set. Consider the Riemann mapping from the exterior
of the unit circle to the exterior of J (normalized so that ∞ is mapped to ∞ and
the point z = 1 is mapped to the repelling fixed point of P ). We denote by φ the
restriction of the continuous extension of this mapping to the unit circle C (this
exists for c in a hyperbolic component of the Mandlebrot set). For simplicity we
parametrize the circle by x = θ

2π in [0, 1]. For the Julia sets we work with, φ is a
continuous mapping onto J , but typically it is not one-to-one (only in the case of
quasicircles is it one-to-one). Thus J is realized as a quotient of C by an infinite set
of identifications of points. In section 2 we describe these identifications explicitly
and give diagrams illustrating them. Since φ intertwines the action P on J and
z → z2 on C, the dynamics of P are easily read from this parametrization. We also
easily obtain a sequence of graphs Γm on J (obtained after identifying points on
graphs Γ′

m on C), where the vertices in Vm+1 are obtained from Vm by applying
P−1.

As noted we require that c is in a hyperbolic component of the Mandelbrot
set. Equivalently we require that Pc has an attracting fixed cycle. This cycle will
be unique, so we may classify the Julia sets we work with by the period of this
cycle, k. Note that k will be constant on each hyperbolic component. The second
requirement demands some notation. Call the connected component of c in the
filled in Julia set U1. This is the region labeled 1 in Figure 1.1. We then require
that the root point of U1 be a fixed point of P . This implies the root has period
k. Our last requirement is that the combinatorial rotation number of c be ±1, i.e.
that P (U1) is the next domain in the filled in Julia set connected to the root in
the clockwise or counterclockwise direction. In the diagram below, this means we
require that either P (U1) = U2 or P (U2) = U1. Given these restrictions, we take
c in the main cardioid (k = 1) or in a series of bulbs directly adjoining it, namely
the ±1

k -bulbs. See [Bra89] for further details.
In section 3 we study the energies Em on the graphs Γm that are naturally

obtained from energies E ′
m on the graphs Γ′

m on C. The lengths of the inter-
vals on C between consecutive vertices are not all equal, but follow a pattern
δm, 2δm, 4δm, ..., 2k−1δm, where k depends on the Julia set (k = 1 for the circle,
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Figure 1.1. Left: Mandelbrot with the bulbs that satisfy our
criterion marked by their k value. Right: The rabbit with the
root and the attracting cycle (0,c,c2 + c) marked. The numbers
reflect the dynamics of P (region 1 maps to region 2 maps to region
3).

k = 2 for the basilica, and k = 3 for the rabbit) and δm = 2−mδ. For the standard
energy on C, resistances are proportional to length, so on Γ′

m

(1.15) E′
m(u, v) = c

∑
m

k−1∑
j=0

2m−j(u(xnk+j+1)−u(xnk+j))(v(xnk+j+1)−v(xnk+j)).

After identifying points (the vertices in V ′
m have the property that all points iden-

tified with a vertex in V ′
m are also in V ′

m) and multiplying by the renormalization

factor 2
1−k
k m, we obtain our energy Em on Γm. However, it turns out that (1.5)

does not hold (if k ≥ 2). Instead we have

(1.16) Em+k(ũ, ũ) = Em(u, u),

where ũ is the harmonic extension to Vm+k.
Thus we obtain k different energies

(1.17) E(j)(u, v) = lim
m→∞

Ekm+j(u, v) for j = 0, 1, ..., k − 1.

It turns out that each of these energies is invariant under P (k) ((1.13) holds), but

(1.18) E(j)(u ◦ P, v ◦ P ) = 2
k+1
k E(j−1)(u, v).

By taking the average

(1.19) E(u, v) = 1

k

k−1∑
j=0

E(j)(u, v)

we obtain a P -invariant energy.
In section 4 we discuss the equilibrium measure μ and conformal measure ν on

J , and the Laplacians Δμ and Δν constructed from the P -invariant energy (1.18)
via (1.9) or (1.10). The measure μ is just the pullback to J of the normalized
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Lebesgue measure on the circle approximated on Vm by the discrete measure that
gives equal weight to all vertices and satisfies the P -invariance condition

(1.20)

∫
J
f ◦ Pdμ =

∫
J
fdμ.

It follows that the Laplacian Δμ also satisfies a P -invariance condition

(1.21) Δμ(u ◦ P ) = 21+
1
k (Δμu) ◦ P.

In particular, if u is a λ-eigenfunction,

(1.22) −Δμu = λu,

then u◦P is a 2
1+k
k λ-eigenfunction. In other words, the spectrum of Δμ is preserved

under multiplication by 21+1/k.
Although the invariance condition (1.20) is very simple, it fails to take into

account the geometry of the mapping P . The corresponding formula for Lebesgue
measure in Rn would have a Jacobian factor. Since the mapping P is conformal,
the Jacobian is a power of |P ′(z)|. The conformal measure ν is characterized by
the condition

(1.23)

∫
J
f ◦ P |P ′|ddν =

∫
J
fdν

for a constant d that may be identified as the Hausdorff dimension of J . The
Laplacian Δν depends on the geometry of J , whereas Δμ is the same for all Julia

sets with the same topology. If we use the energies E(j) instead of E we obtain

Laplacians Δ
(j)
μ and Δ

(j)
ν . We will show that the Laplacians Δ

(j)
μ all commute, so

they have the same eigenfunctions (with different eigenvalues).
In section 5 we discuss the symmetries of Δμ. Of course every Julia set has the

symmetry z → −z, and this is a symmetry of all the Laplacians. The circle has
complete rotation symmetry. If we look at the basilica (c = −1) we see that it is
symmetric with respect to the vertical RV and the horizontal RH reflections. In the
external ray parameterization these are also vertical and horizontal reflections, or
x → −x and x → 1

2 − x (the product is x → 1
2 + x, which corresponds to z → −z).

It is clear that these symmetries preserve all the energies and the measure μ, but
not the measure ν. So Δμ has a Z2⊕Z2 symmetry group, and we can subdivide the
eigenfunctions into four types according to even and odd behavior under RV and
RH . We write these as ++,+−,−+, and −−. It is easy to see that an eigenfunction
u has the form u = u′ ◦P for another eigenfunction u′ if and only if it has the type
++ or −−. We call such an eigenfunction derived, and all others primitive. We
show that reflectional symmetries of Δμ exist on all the Julia sets we study. We
continue to denote them by RV and RH , although they are not simple vertical and
horizontal reflections on the ambient plane and do not have the same description
in the external ray parameterization.

In section 6 we describe the algorithms we use to compute approximation to the
conformal measure ν, the eigenfunctions, and eigenvalues of Laplacians. We present
numerical data in graphical form for a few examples of quasicircles, the basilica, and
the rabbit. Further computational results may be found in [Flo08]. We also show
the eigenvalue counting functions and Weyl ratios. We have numerical evidence for
eigenvalue gaps and spectral clusters.
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In section 7 we discuss the properties of the eigenfunctions of Δμ that are vis-
ible in the data, using the symmetries of Δμ. In particular, we can predict the
multiplicities of eigenspaces and the supports of eigenfunctions. This already goes
beyond the results for the basilica obtained in [RT09].

Each Julia set can be viewed as the closure of a countable collection of topological
circles that intersect at junction points (the junction points are dense in each circle)
where exactly k circles meet. In [RT09] this structure is used to describe the energy.
In section 8 we consider the restrictions of the eigenfunctions to one of these circles
that we call the central circle. It corresponds to a Cantor set in the external
ray parameterization. The portions of J that correspond to the complementary
intervals of this Cantor set we will call loops. We will show that generically the
restriction to a loop of any eigenfunction is determined by the eigenvalue, the size
of the loop, and the value at the junction point. We will use this to produce an
eigenfunction equation for a different Laplacian on the central circle.

Further development of the methods of this paper may be found in [ADS10]. In
particular, it treats a wider class of Julia sets, provides an alternate construction
of the energy for our examples, and considers covering spaces and blowups of Julia
sets.

2. External ray parameterization

We start our graph approximation from a fixed point z0 of P lying in J . For
such a point we have z2+c = z, which can be solved using the quadratic formula to

produce z± = 1±
√
1−4c
2 . z+ will be a repelling fixed point (and thus in the Julia set)

for all values of c. The same will be true of z− for c outside the main cardioid of the
Mandlebrot set (k ≥ 2). We take z+ = z0 when k = 1 and z− = z0 otherwise. As
this point is chosen such that P (z0) = z0, we have that φ(P (z0)) = φ(z0) and thus
that 2x0(mod1) = x0, where x0 = φ(z0). Given this we take V ′

0 = {x : x = φ(z0)},
namely

(2.1) V ′
0 =

{
2j

2k − 1

}
, j = 0, 1, . . . , k − 1.

These points divide the circle into k intervals

(2.2)

[
2j

2k − 1
,
2j+1

2k − 1

]

of lengths 2j

2k−1
in the counterclockwise order. These points are all identified to

give a single point in V0.
We then define V ′

1 by 2V ′
1 = V0 (double cover). In other words, the points in

V ′
1 have the form 1

2x and 1
2x + 1

2 as x varies over V ′
0 . Note that V ′

0 ⊂ V ′
1 . This is

obvious for 2j

2k−1
with j ≤ k− 2, but 2k−1

2k−1
1
2 =

(
1

2k−1

)
+ 1

2 . The remaining k points

in V ′
1\V ′

0 are 1
2

(
2j

2k−1

)
+ 1

2 for j = 1, . . . , k − 1 and 1
2

(
1

2k−1

)
. Note that they all

lie in the interval
[
2k−1

2k−1
, 1
2k−1

]
. The points in V ′

1 divide the circle into two cycles

of intervals of length 1
2

2j

2k−1
for j = 0, 1, ..., k − 1 in counterclockwise order. An

equivalent description of the passage from V ′
0 to V ′

1 is the following: leave all the

short intervals (of length 2j

2k−1
for j ≤ k− 2) alone and subdivide the long intervals

(of length 2k−1

2k−1
) into short intervals of lengths 2j

2k−1
for j ≤ k− 2 and two of length
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1
2

1
2k−1

. In passing from V ′
1 to V1 we maintain the identification of points in V0 and

identify the k new points in the long intervals. If we make V ′
1 into a graph Γ′

1 by
joining adjacent points on the circle by edges, then the induced graph Γ1 has two
edges joining its two vertices and two sets of k − 1 self-edges at each point. These
self-edges do not contribute to the energy, and so we will ignore them. The cases
k = 2 and k = 3 are illustrated in Figure 2.1.

Figure 2.1. The vertices in V0 in dark dots and in V1\V0 in open
dots. The lengths of the intervals are marked.

We can describe in similar terms the passage from V ′
m to V ′

m+1. There are 2mk
points in V ′

m that are identified to 2m points in Vm. The points V ′
m subdivide the

circle into 2m cycles of intervals of lengths 1
2m

2j

2k−1
for j = 0, ..., k − 1 in coun-

terclockwise order. The new points in V ′
m+1\V ′

m lie in the long intervals of length
1
2m

2k−1

2k−1
and subdivide each such interval into short intervals of length 1

2m
2j

2k−1

for j = 0, ..., k − 1 and two intervals of length 1
2m+1

1
2k−1

at the ends (note that∑k−2
j=0

1
2m

2j

2k−1
+ 2 1

2m+1
1

2k−1
= 1

2m
2k−1

2k−1
). The k points in each long interval are

identified when we pass from V ′
m+1 to Vm+1. Figure 2.2 shows several stages of

subdivision for k = 2 and Figure 2.3 does the same for k = 3.

Figure 2.2. k = 2. The vertices in Vm \ Vm−1 are labeled with
open dots, and the lengths of the intervals are marked.
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Figure 2.3

Next we describe the mapping φ from the circle to the Julia set in terms of the
points in Vm. The point in V0 is mapped to the fixed point of P that is a junction
point on the central circle. Then, inductively, the points in Vm+1 are mapped to the
preimages of the points in Vm under P . This is illustrated for the basilica (k = 2)
and the rabbit (k = 3) in Figures 2.4 and 2.5. Note that the intervals in V ′

1 get
mapped as follows: in each half the k − 1 longest intervals that correspond to the
self-edges get mapped to k− 1 loops that join the central circle at either end, while
the two short intervals get mapped to the central circle together with all the other
loops that join it. These loops are images of intervals inside the short intervals, so
the central circle is the image of their complement, a set of measure zero of Cantor
type (it is not strictly speaking a Cantor set because it contains isolated points).

Figure 2.4
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Figure 2.5

3. Energies

The first step is to define energies Em on the graphs Γm. Consider the natural
energy E′

m on Γ′
m defined by

(3.1) E′
m(u, v) =

∑
x′

∼
m

y′

1

|x′ − y′| (u(x
′)− u(y′))(v(x′)− v(y′)) (x′, y′ ∈ V ′

m).

In other words, we take a resistance |x′ − y′| equal to the length of the interval
connecting the consecutive vertices x′, y′. If u and v are defined on Vm, then we
can regard them also as functions on V ′

m which take the same value on identified
points. Thus it makes sense to define

(3.2) Em(u, v) = E′
m(u, v).

In terms of the graph Γm, each vertex x has 2k edges of lengths 1
2m

2j

2k−1
for j =

0, 1, . . . , k − 1, each length repeated twice. Some of the edges may be self-edges,
and some of the neighbors may repeat twice. Thus Em(u, v) has the form

(3.3) Em(u, v) =
∑
x∼
m

y

cm(x, y)(u(x)− u(y))(v(x)− v(y)) (x, y ∈ Vm),

where the conductance cm(x, y) is the sum of 1
|x′−y′| for all pairs (x′, y′) mapping

to (x, y) with x′, y′ consecutive vertices in V ′
m.

The action of P on J intertwines the action x → 2x on C, so we will continue
to write P (x) = 2x. We want to compute Em(u ◦P, v ◦P ) = E′

m(u ◦P, v ◦P ). The
action of P maps Vm to Vm−1 in a two-to-one fashion and respects the identification
of points. We have E′

m(u ◦ P, v ◦ P ) = 22E′
m−1(u, v), one factor of 2 coming from

the double covering and one factor of 2 arising from the doubling of the length of
intervals under P . Thus

(3.4) Em(u ◦ P, v ◦ P ) = 4Em−1(u, v).
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We will also need the iterated version

(3.5) Em(u ◦ P (k)) = 4kEm−k(u, v).

Now suppose u is defined on Vm, and we want to compute the harmonic extension
ũ to Vm+1. Each new point x in Vm+1\Vm consists of k identified points in a long

interval of length 1
2m

2k−1

2k−1
between points y′ and z′ in V ′

m. The contribution to

Em+1(ũ, ũ) involving ũ(x) is then

(3.6) 2m+1(2k − 1)
(
(ũ(x)− u(y′))2 + (ũ(x)− u(z′))2

)
.

This is clearly minimized by setting

(3.7) ũ(x) =
1

2
(u(y′) + u(z′)),

which makes (3.6) equal to

(3.8) 2m(2k − 1)(u(y′)− u(z′))2.

If y′ and z′ are identified in Vm, this is just 0. Otherwise, it replaces the contribution

(3.9) 2m−k+1(2k − 1)(u(y′)− u(z′))2

to E′
m(u, u) associated to the adjacent points y′, z′ ∈ V ′

m. Note that (3.8) is simply
(3.9) multiplied by 2k−1. On the other hand, for adjacent points y′, z′ in V ′

m that

are separated by a short interval of length 1
2m

2j

2k−1
for j ≤ k − 2, the contribution

to E′
m+1 is the same as for E′

m. Thus we definitely do not have Em+1(ũ, ũ) equal
to a constant multiple of Em(u, u).

Lemma 3.1. For the harmonic extension ũ of u from Vm to Vm+k, we have

(3.10) Em+k(ũ, ũ) = 2k−1Em(u, u).

Proof. Consider any pair of adjacent points y′, z′ separated by an interval of length
1
2m

2j

2k−1
. There will be no new points added between them until the passage from

Em+k−j−1 to Em+k−j. At that stage, the contribution associated to the interval will
be multiplied by 2k−1. After that stage, points will be inserted between identified
points, so the harmonic extension will be constant and contribute 0 to the energy.
Thus every term in the expression (3.1) for E′

m(u, u) gets multiplied by 2k−1 yielding
(3.10). �

We thus make the definition

(3.11) Em(u, v) = 2(
1−k
k )mEm(u, v)

in order to replace (3.10) with

(3.12) Em+k(ũ, ũ) = E(u, u).
For each j = 0, 1, . . . , k − 1 we have (for u defined on Vk)

(3.13) Ej+km(u, u) ≤ Ej+k(m+1)(u, u),

and so it makes sense to define

(3.14) E(j)(u, v) = lim
m→∞

Ej+km(u, v)

on dom E(j) defined to be the set of functions u for which E(j)(u, u) < ∞. In fact
the above argument shows that

(3.15) Em(u, u) < Em+1(ũ, ũ) ≤ 2k−1Em(u, u),
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and so

(3.16) Em(u, u) ≤ 2
k−1
k Em+1(u, u) ≤ 2k−1Em+k(u, u).

This implies

(3.17) 2−
(k−1)2

k E(j+1)(u, u) ≤ E(j)(u, u) ≤ 2
k−1
k E(j+1)(u, u),

so dom E(j) is independent of j. Thus we denote it by dom E . Note that since
the constant in (3.11) is less than one, nonconstant functions in dom E will have
E′

m(u, u) going to infinity, and so will have infinite energy when viewed as functions
on the circle.

Theorem 3.2. A function in dom E , when considered as a function on C, is Hölder
continuous of order 1

2k , and

(3.18) |u(x′)− u(y′)| ≤ cE(j)(u, u)
1
2 |x′ − y′| 1

2k (for any j).

Proof. It suffices to show that (3.18) holds when x′, y′ are adjacent points in V ′
m

for some m. In that case |x′ − y′| is comparable to 2−m. From the definition (3.1)
we have

(3.19) |u(x′)− u(y′)|2 ≤ |x′ − y′|E′
m(u, u).

From the definition (3.11) we have

(3.20) E′
m(u, u) = 2(1−

1
k )mEm(u, u) ≤ c|x′ − y′| 1k−1Em(u, u).

Combining (3.19) and (3.20) we obtain

(3.21) |u(x′)− u(y′)|2 ≤ c|x′ − y′| 1k Em(u, u),

which easily yields (3.18). �
It follows that dom E embeds naturally in the continuous functions on J , and

dom E modulo constants are a Hilbert space with inner product E(j) for any j.
By combining (3.4) with the definition (3.11) we obtain

(3.22) Em(u ◦ P, v ◦ P ) = 21+
1
k Em−1(u, v).

Theorem 3.3. If u ∈ dom E , then u ◦ P ∈ dom E and

(3.23) E(j)(u ◦ P, v ◦ P ) = 21+
1
k E(j−1)(u, v).

It follows that

(3.24) E(j)(u ◦ P (k), v ◦ P (k)) = 2k+1E(j)(u, v)

so that there is a k-dimensional space of energies satisfying the invariance condition
(3.24) under P (k). Moreover, if we define

(3.25) E(u, v) = 1

k

k−1∑
j=0

E(j)(u, v),

then E satisfies the P-invariance condition

(3.26) E(u ◦ P, v ◦ P ) = 21+
1
k E(u, v).

Proof. Replacing m by j +mk in (3.22) and passing to the limit we obtain (3.23).
Iterating this k times yields (3.24). It is not difficult to deduce from the discussion
preceding Lemma 3.1 that all the energies E(j) are distinct and linearly independent.
Then (3.26) follows from (3.24) and (3.25). �
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4. Laplacians

In order to construct a Laplacian from the energy E , we also need a measure.
Since we want the Laplacian to reflect the dynamics of P on J , there are two natural
choices. The simplest is the equilibrium measure μ, which is just the pullback under
φ : C → J of the normalized Lebesgue measure on C,

(4.1)

∫
J
fdμ =

∫
C

f ◦ φdx.

For each interval [a, b] in C, the image of φ([a, b]) in J is assigned measure b − a.
Since

(4.2)

∫
C
f(2x)dx =

∫
C

f(x)dx

it follows that μ satisfies the P -invariance condition

(4.3)

∫
J
f ◦ Pdμ =

∫
J
fdμ.

It is not difficult to see that (4.3) uniquely determines μ up to a constant multiple.
Under any local one-to-one inverse of P , the measure is reduced by a factor of 1

2 .
It is easy to approximate μ by the discrete measure on V ′

m that assigns equal
weight 1

2mk to each point so that on Vm each point has weight 2−m. At first it
appears that we could do a better job on Vm by assigning weight to a point x
proportional to the length of the two intervals on either side of x, but in fact that
would make no difference on V ′

m since every point corresponds to k points in Vm

with one representative of each weight.
If we look at a picture of J we see that μ assigns equal measure to loops that

appear vastly different in size. If we want a measure that more accurately reflects
the geometry of J in the Euclidean plane, we can use the conformal measure ν
characterized by the identity

(4.4)

∫
J
(f ◦ P )|P ′|ddν =

∫
J
fdν,

where d is the unique constant for which there exists a probability measure solution.
It is known that d is equal to the Hausdorff dimension of J . Suppose P : B → A
is one-to-one and B is small enough that P ′ is approximately constant. Then by
taking f to be the characteristic function of A, (4.4) tells us that ν(A) ≈ |P ′

|B|dν(B).

So when |P ′| is larger the mapping P multiplies the ν measure by a larger factor,
and where it is smaller the factor is smaller. Since |P ′(z)| = 2|z| in all cases, the
enlargement factor just depends on the distance to the origin. In fact, for z inside
the circle |z| = 1

2 , the measure is decreased.
To approximate ν by a discrete measure on Vm, we just have to assign weights

wm(x) to all points x ∈ V ′
m. To have a probability measure we need

(4.5)
∑
x∈V ′

m

wm(x) = 1.

To approximate (4.4) we want

(4.6) wm(x) ≈ |2φ(x)|dwm−1(2x).
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We can start with w0(x) = c for the points in V ′
0 that are identified with the unique

point in V0, and then use (4.6) to inductively define wm on Vm (in terms of the
parameter d). For large values of d

(4.7)
∑
x∈V ′

m

wm(x)

will tend to 0, and for small values of d it will tend to ∞ as m → ∞. The unique
value d is the one that lies in between, for which (4.7) remains bounded and has
finite limit, and by adjusting the constant c we can make the limit 1. This gives
us a slow trial and error algorithm to approximate both the dimension d and the
measure ν.

Using the energy E and these measures, we construct the equilibrium Laplacian
Δμ and the conformal Laplacian Δν by (1.9) or (1.10). One could also construct

Laplacians Δ
(j)
μ and Δ

(j)
ν using the energies E(j) in place of E .

The equilibrium Laplacian Δμ satisfies the P -invariance condition

(4.8) Δμ(u ◦ P ) = 21+
1
k (Δμu) ◦ P

as an immediate consequence of (4.3) and (3.26). The following important result is
now obvious.

Theorem 4.1. If u is an eigenfunction of Δμ with eigenvalue λ, then u◦P (n) is also

an eigenfunction of Δμ with eigenvalue 2n(1+
1
k )λ. In particular, 2(1+

1
k )Σμ ⊆ Σμ,

where Σμ denotes the spectrum of Δμ.

Definition 4.2. An eigenfunction u of Δμ is called derived if there exists u′ such
that u = u′ ◦ P or primitive if no such u′ exists. A derived eigenfunction is of
class Dn if n is the largest integer such that u = u′ ◦P (n) for some eigenfunction u′.
A positive eigenvalue λ ∈ Σμ is called derived or primitive according to whether

2−(1+ 1
k )λ is or is not in Σμ, and a derived eigenvalue is of class Dn if n is the largest

integer such that 2−n(1+ 1
k )λ ∈ Σμ. Warning: the eigenspace of a derived eigenvalue

may contain both derived and primitive eigenfunctions.

Theorem 4.3. An eigenfunction of Δμ is derived if and only if it is even under
z → −z:

(4.9) u(−z) = u(z).

Conversely, if an eigenfunction of Δμ is odd,

(4.10) u(−z) = −u(z),

then u is primitive.

Proof. Suppose u = u′ ◦ P for some eigenfunction u′. Then

u(−z) = u′(P (−z)) = u′(P (z)) = u(z)

since P (−z) = P (z), so (4.9) holds for derived eigenfunctions. Since (4.10) is
incompatible with (4.9), it implies that u is primitive. Finally, suppose (4.9) holds.
Define u′(z) = u(P−1z). Note that (4.9) implies that u′ is well defined, since both
preimages of z under P differ by a minus sign. Then (4.8) shows that u′ is an
eigenfunction of Δμ, so u is derived. �
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If an eigenspace has multiplicity 1, then either (4.9) or (4.10) must hold, and
this will distinguish the derived and the primitive. However, there are eigenspaces
of higher multiplicity, and these split into direct sums of primitive and derived
eigenfunctions using the usual even odd splitting of functions (obviously z → −z
commutes with all Laplacians).

The equilibrium Laplacian Δμ is defined entirely in terms of identifications on C
and the mapping φ from C to J , so it is essentially the same for all Julia sets with
the same topology. For example, if J is a quasicircle, then Δμ is just the ordinary
Laplacian under the parameterization φ. From this point of view, the conformal
Laplacian is more interesting. However, the price we pay is that we cannot describe
the structure of the spectrum of Δν in the same detail as for Δμ.

5. Symmetries of the equilibrium Laplacian

The rotation z → −z is an obvious symmetry of all Julia sets and all our Lapla-
cians. In this section we describe two more symmetries of Δμ that we will call
vertical RV and horizontal RH reflections. In the case of the basilica (k = 2) these
are exactly what they are, both on J and on C. In general they are different, but
we will use the same terminology. The basic idea is that on the central circle we
will take reflections and at junction points we will permute the loops that join.

First we describe RH . In Figure 2.1 with k = 2 a horizontal reflection maps
vertices to vertices, and the same is true in Figure 2.2. However, in Figure 2.1 with
k = 3, if we reflect about the diameter through 3

28 and 17
28 , we will permute 1

14 and
1
7 and also 4

7 and 9
14 , but we will not permute 2

7 and 11
14 . But the intervals [ 17 ,

2
7 ]

and [ 27 ,
4
7 ] get mapped to two loops that join the central cycle at the same point.

Since the order does not matter to the intrinsic geometry of J , we can permute
them by replacing 2

7 by 3
7 , as shown in Figure 5.1.

Figure 5.1 Figure 5.2

Now the reflection permutes all points. Of course we have to continue to permute
the order of smaller loops to extend the reflection to the V ′

m vertices shown in Figure
2.3 and now seen in Figure 5.2.

The same pattern persists for higher values of m within the loops [ 17 ,
4
7 ] and

[ 9
14 ,

1
14 ]. These loops are isometric to each other if we do the appropriate permu-

tation of subloops. However, something different has to be done in the interval,
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[ 1
14 ,

1
7 ] and [ 47 ,

9
14 ] that map to the central circle and the other loops that join it.

At level m = 4 we subdivide [ 1
14 ,

1
7 ], as shown in Figure 5.3.

Figure 5.3

RH will permute the intervals [ 8
112 ,

9
112 ] and [ 15

112 ,
16
112 ] (with appropriate subloop

swaps as these intervals subdivide for higher values of m), but it will preserve
the loops [ 9

112 ,
11
112 ] and [ 11

112 ,
15
112 ], acting as a reflection on each one in a similar

fashion: every time you subdivide a loop into two outer intervals and two inner
loops, permute the outer intervals and preserve the inner loops.

To describe RV we want a modified reflection about the perpendicular diameter
through 5

14 and 12
14 . This will permute the intervals [ 1

14 ,
1
7 ] and [ 47 ,

9
14 ] with the

appropriate swapping of subloops. However, the loops [17 ,
2
7 ], [

2
7 ,

4
7 ], [

9
14 ,

11
14 ] and

[ 1114 ,
15
14 ] are all preserved. When they are subdivided the rule is the same as for RH :

the outer two intervals are permuted while the inner two loops are preserved.
It is not hard to see that RH and RV commute with Δμ, so eigenfunctions may

be sorted according to whether they are even or odd. We write the RV symmetry
first, so +− symmetry type means u◦RV = +u and u◦RH = −u, etc. Functions of
type ++ and −− satisfy (4.9), and functions of type +− and −+ satisfy (4.10). We
call the +− type horizontal (H) and the −+ type vertical (V ). By Theorem 4.3 we
may sort the primitive eigenfunctions into H and V types. The key observation is
that we may decompose J into horizontal (resp. vertical) segments joined at fixed
points of RH (resp. RV ), such that the H eigenfunctions behave independently on
the segments: they can be multiplied by a different constant on each segment and
remain eigenfunctions. In particular, if the eigenspace has multiplicity one, then
the eigenfunction must be supported in one segment.

It is easy to see the segments on the basilica. The fixed points of RV are the
junction points along the horizontal axis. In the C parameter they are 1

3 ∼ 2
3 ,

1
6 ∼

5
6 ,

1
12 ∼ 11

12 ,
5
12 ∼ 7

12 , ... (in general 1
3·2m ∼ 1− 1

3·2m , 1
2 − 1

3·2m ∼ 1
2 + 1

3·2m ), so the
vertical segments are just the intersection of J with the vertical strips bounded by
the vertical lines through the fixed points as shown in Figure 5.4.

Figure 5.4
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Similarly, the fixed points of RH are the junction points along the vertical axis,
with C parameters 5

24 ∼ 7
24 ,

17
24 ∼ 19

24 ,
23
96 ∼ 25

96 ,
71
96 ∼ 73

96 ... (in general 1
4 − 1

6·4m ∼
1
4 + 1

6·4m , 3
4 − 1

6·4m ∼ 3
4 + 1

6·4m ). The horizontal strips and segments are shown in
Figure 5.5.

Figure 5.5

The vertical segments are also clearly visible in the C parameter space in Fig-
ure 2.2. Note that RH preserves the central vertical segment and permutes the
other vertical segments in left-right pairs, while RV preserves all vertical segments.
Similarly, RV preserves the central horizontal segment and permutes the other hor-
izontal segments in up-down pairs, while RH preserves all horizontal segments.

In the general cases, the central vertical segment corresponds to the pair of
intervals [ 1

2(2k−1)
, 1
2k−1

] and [ 12 +
1

2(2k−1)
, 1
2 +

1
2k−1

] between the points of V ′
1 . Each

time we subdivide a loop we add a vertical segment corresponding to the pair of
small intervals at the ends of the loop. In terms of J , a vertical segment contains
a circle together with all loops that join it except at the midpoints. Similarly, a
horizontal segment contains a circle together with all loops that join it except at
the midpoints. In particular, the central horizontal segment in C parameters is just

the complement of the two intervals [ 2k+1
2k+1(2k−1)

, 2k+1−1
2k+1(2k−1)

] and [ 12 +
2k+1

2k+1(2k−1)
, 1
2 +

2k+1−1
2k+1(2k−1)

]. Again RH preserves the central vertical segment and permutes the

other vertical segments in pairs, etc.

Theorem 5.1. Let u be an eigenfunction of Δμ that is odd with respect to RH

(resp. RV ). If ũ is the restriction of u to any horizontal (resp. vertical) segment,
defined to be equal to zero outside that segment, then ũ is also an eigenfunction. In
particular, if λ is any primitive eigenvalue of multiplicity 1, then the corresponding
eigenfunction is supported on the central horizontal or vertical segment, depending
on its H or V type.

Proof. The eigenvalue equation for ũ is obvious at all points except the endpoints
of the segment. Because u is odd, ũ vanishes at the endpoints. This also implies
Δμũ is zero at the endpoints. Thus the eigenvalue equation is trivially true at
the endpoints (0 = λ0). If the multiplicity of the eigenvalue is 1, u must vanish
identically on all but one segment. If this were not a central segment, then we
could obtain a linearly independent eigenfunction by composing u with one of the
reflections. �

We will give more applications of this result in section 7.
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6. Numerical data

1. Conformal measure.
We present numerical results relevant to the computation of ν. As Haus-

dorff dimension is used in (4.6) to derive ν its computation is given for each
of the examples we will discuss: 2 quasicircles (c = .2 and c = .33− .25i), the
standard basilica (c = −1), one other k = 2 type Julia set (c = −1 + .15i)
and the standard rabbit (c = −.122+ .745i). To help build intuition we give
the conformal measure, the corresponding cumulative distribution function,
and J ′(z) = 2|z| on the standard basilica. For more computational results
see [Flo08].
(i.) Computation of Hausdorff dimension d.

To approximate the Hausdorff dimension of the Julia set corresponding
to z2 + c we calculate the sum of weights assigned by equation (4.6) for
d chosen at regular intervals in [1, 2] on graph levels 1-22 (1-21 in the
case of rabbit). If d is chosen too large, the sequence will diverge, and
for d too small, the sequence tends to 0. Given this we refine the grid.
Continuing this process allows us to estimate d to the desired accuracy.
For c = .2 we estimate d = 1.0257, using the sequence of graphs in
Figure 6.1.

Figure 6.1. c = .2 Ranges of d from top left to bottom
right: 1-2 in increments of .1, 1-1.1 by .01, d ranges 1.02-1.03 by
.001, 1.025-1.026 by .0001.

For c = .33− .25i we estimate d = 1.1735 in Figure 6.2.
For the basilica, c = −1, we approximate d = 1.2683 in Figure 6.3.
Next we examine c = −1+ .15i and estimate d = 1.3052 in Figure 6.4.
Next we examine c = −.122 + .745i, the rabbit. We estimate d = 1.39
in Figure 6.5. Because of the cycles in data, we would need greater
computational power to improve this estimate.
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Figure 6.2. c = .33− .25i Ranges of d from top left to bot-
tom right: 1-2 in increments of .1, 1.1-1.2 in increments of .01,
1.17-1.18 in increments of .001, 1.173-1.174 in increments of .0001.

Figure 6.3. c = . − 1 Ranges of d from top left to bottom
right: 1-2 in increments of .1, 1.2-1.3 in increments of .01, 1.26-
1.27 in increments of .001, 1.268-1.269 in increments of .0001.

We note that these results correspond to our expectations. The Haus-
dorff dimension falls between 1 and 2, and increases as we increase
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Figure 6.4. c = −1 + .15i Ranges of d from top left to bot-
tom right: 1-2 in increments of .1, 1.3-1.4 in increments of .01,
1.30-1.31 in increments of .001, 1.305-1.306 in increments of .0001.

Figure 6.5. c = −.122+ .745i Ranges of d from left to right:
1-2 in increments of .1, 1.3-1.4 in increments of .01, 1.39-1.40 in
increments of .001.
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topological complexity, and for the k = 1 and k = 2 examples the
set that intutitively looks more complex in fact has a higher estimated
Hausdorff dimension.

(ii.) Data relevant to the computation of ν on the standard basilica, using
d = 1.2683.
Once we have an estimate of the Hausdorff dimension we use it to
construct the conformal measure as in equation (4.6). This is pictured
in Figure 6.6.

Figure 6.6. Top: ν with respect to ray parameterization. Bot-
tom: approximation to ν by pointmasses.

We also give the cumulative distribution function for ν and the graph
of |J ′(z)| = 2|z| as pointmasses (for comparsion to ν). This is shown in
Figure 6.7.

2. Spectra - Equilibrium measure.
(i.) Computation of the spectra.

Our program is divided into two pieces. First we set up the problem
by computing the m-th level graph approximation in C and in the ray
parameter, as per the discussion in section 2, recording the appropriate
identifications. We then calculate weights given the choice of measure.
Using this information we construct the m-th level Laplacian matrix
as in (1.11). We then use Matlab(R2007b)’s Eig function to find the
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Figure 6.7. Top: ν([0, x]). Bottom: approximation to |J ′(z)| =
2|z| by pointmasses.

eigenvalues and eigenvectors of our Laplacian matrix. These results are
given below.

(ii.) Computed eigenvalues and eigenfunctions for the basilica c = −1 (k =
2).
In Table 1 we give the computed eigenvalues on the last four computed
levels of the graph (10−13), a predicted value, Dn(Typem), and 23n/2 ∗
λTypem . In Figure 6.9 there are pictures of the first 16 eigenfunctions
as well as more detailed views of a few functions that show particularly
interesting behavior.
We give the following for interpreting the tables. Dn(Typem), where
Type is V or H depending on whether the function is vertical or hori-
zontal, m refers to the number of the primitive eigenfunction from which
ours derives, and n is the number of derivations required to reach the
current eigenfunction. 23n/2 ∗λTypem is the eigenvalue predicted by the
P -invariance condition on Δμ given in (4.8). As the eigenvalue of H1

and V 1 are known to have a high degree of accuracy, 23n/2 ∗ λTypem

will predict the eigenvalues of their derived eigenfunction with high ac-
curacy. We then interpolate linearly between these values to obtain a
prediction for arbitrary eigenfunctions. It should be noted that com-
paring eigenvalues predicted from the computation and by the equation
23n/2 ∗ λTypem can alert us to approximation errors.
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Table 1. Computed actual eigenvalues of Δμ c = −1

# Level 10 Level 11 Level 12 Level 13 Predicted Dn(Typem) 23n/2 ∗ λTypem
1 0 0 0 0 – – –

2 39.868 39.869 39.870 39.870 – H1 –
3 112.757 112.765 112.768 112.769 112.769 D1(H1) 112.769
4 196.499 196.537 196.542 196.547 196.548 V1 –
5 274.985 275.045 275.060 275.068 275.071 H2 –
6 318.848 318.924 318.946 318.956 318.960 D2(H1) 318.960
7-8 555.662 555.784 555.890 555.905 555.918 D1(V1) 555.918
9 777.435 777.774 777.946 777.988 778.012 D1(H2) 778.010
10 821.559 821.962 822.145 822.196 822.225 H3 –
11 901.338 901.838 902.054 902.116 902.154 D3(H1) 902.154
12 1087.702 1088.651 1088.887 1089.006 1089.055 H4 –
13 1131.912 1132.953 1133.205 1133.335 1133.389 V2 –

14-16 1569.255 1571.648 1571.996 1572.294 1572.375 D2(V1) 1572.375
17 2195.019 2198.918 2199.878 2200.364 2200.499 D2(H2) 2200.544
18 2242.639 2246.649 2247.673 2248.172 2248.333 H5 –
19 2319.552 2323.720 2324.859 2325.378 2325.568 D1(H3) 2325.521
20 2430.056 2434.671 2435.908 2436.483 2436.705 V3 –
21 2501.764 2506.543 2507.895 2508.489 2508.744 H6 –
22 2544.471 2549.369 2550.784 2551.393 2551.678 D4(H1) 2551.678
23 3069.346 3074.711 3077.393 3078.061 3078.503 H7 –
24 3071.110 3076.486 3079.169 3079.838 3080.381 D1(H4) 3080.173

25-26 3195.816 3201.531 3204.476 3205.187 3205.856 D1(V2) 3205.554
27-32 4430.630 4438.524 4445.292 4446.275 4447.347 D3(V1) 4447.347

33 6186.513 6208.450 6219.478 6222.195 6223.763 D3(H2) 6224.079
34 6229.699 6252.139 6263.256 6266.035 6267.683 H8 –
35 6319.742 6343.141 6354.483 6357.380 6359.121 D1(H5) 6358.792
36 6377.333 6401.701 6413.067 6416.084 6417.911 V4 –
37 6480.064 6505.510 6517.154 6520.303 6522.231 H9 –
38 6534.651 6560.683 6572.474 6575.695 6577.712 D2(H3) 6577.565

39-40 6844.940 6873.236 6886.290 6889.789 6891.977 D1(V3) 6891.414
41 7045.133 7076.056 7089.575 7093.397 7095.727 D1(H6) 7095.079
42 7086.397 7117.912 7131.514 7135.409 7137.831 H10 –
43 7164.472 7196.852 7210.705 7214.706 7217.234 D5(H1) 7217.234
44 7376.824 7413.193 7427.195 7431.687 7434.383 H11 –
45 7432.363 7469.456 7483.616 7488.196 7491.006 V5 –
46 8619.797 8681.423 8696.596 8704.182 8707.556 D1(H7) 8706.070
47 8622.301 8683.944 8699.133 8706.721 8710.204 H12 –
48 8624.752 8686.412 8701.615 8709.206 8712.799 D2(H4) 8712.045

49-51 8971.421 9039.132 9055.298 9063.627 9067.478 D2(V2) 9066.677
52 11065.940 11185.447 11204.938 11219.571 11224.478 V6 –
53 11066.291 11185.804 11205.297 11219.931 11224.977 H13 –

54-64 12374.923 12531.714 12554.041 12573.185 12578.996 D4(V1) 12578.996

Eigenvalue counting functions N(x) and Weyl ratios W (x) of Δμ for
c = −1 are illustrated in Figure 6.8.



LAPLACIANS ON A FAMILY OF QUADRATIC JULIA SETS I 3937

Figure 6.8. Top: Eigenvalue counting function and Bottom:
Weyl ratio for predicted eigenvalues of Δμ for c = −1.
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(iii.) Computed eigenvalues and eigenfunctions for the rabbit c = −.122 +
i.745 (k = 3).
For c = −.122 + i.745 we give the computed eigenvalues on several
levels of the graph, a predicted value, Dn(Typem), and 24n/3 ∗ λTypem .
The labeling scheme in Table 2 is the same as that in the previous
table. 24n/3 ∗ λTypem is the eigenvalue predicted by the P -invarience
condition on Δμ given in (4.8). For Table 2, the predictions are based
on the ratios of differences of successive terms, using the equation =
V + (D) ∗ R/(1− R) where V is the last computed value and D is the
difference between V and the value at the prior level. As the ratios
between successive differences oscillate with period 3, when there is
sufficient data (namely for the first 32 eigenfunctions) we take R to be
the average of the last 3 ratios. For 32 − 64 we take R to be the ratio
of two.

Table 2. Computed actual eigenvalues of Δμ c = −.122 +
.745i

# Level 8 Level 9 Level 10 Level 11 Predicted Dn(Typem) 24n/3 ∗ λTypem
1 0.000 0.000 0.000 0.000 0.000 – –
2 165.721 165.824 165.883 165.904 165.923 H1 –
3 416.734 417.592 417.851 417.998 418.031 D1(H1) 418.052
4 511.495 512.956 513.414 513.584 513.724 H2 –
5 1044.099 1050.103 1052.266 1052.919 1053.731 D2(H1) 1053.424
6 1130.963 1137.403 1140.071 1140.884 1141.822 H3 –
7 1281.905 1288.888 1292.567 1293.721 1295.003 D1(H2) 1294.150
8 1714.862 1725.744 1733.302 1735.285 1738.810 V1 –
9 2461.466 2485.993 2499.697 2504.461 2508.700 H4 –
10 2603.427 2630.964 2646.093 2651.543 2655.987 D3(H1) 2654.462
11 2805.593 2839.746 2855.919 2862.590 2866.231 H5 –
12 2815.301 2849.849 2866.075 2872.798 2876.407 D1(H3) 2874.848
13 3151.277 3200.372 3217.576 3226.638 3228.738 H6 –
14 3180.544 3230.197 3247.793 3257.065 3259.212 D2(H2) 3261.054

15-16 4232.083 4321.182 4348.603 4367.648 4368.480 D1(V1) 4372.645

17 5984.182 6202.505 6264.310 6298.841 6303.698 D1(H4) 6310.847
18 6092.709 6321.151 6386.209 6421.640 6427.175 H7 –
19 6309.295 6560.226 6629.613 6667.737 6673.458 D4(H1) 6688.825
20 6421.773 6685.026 6758.788 6797.444 6804.497 H8 –
21 6764.448 7069.650 7155.712 7196.465 7207.290 D1(H5) 7213.276
22 6773.988 7080.199 7166.696 7207.502 7218.460 H9 –
23 6786.602 7094.113 7181.169 7222.056 7233.172 D2(H3) 7244.163
24 6988.374 7319.172 7416.793 7458.105 7473.183 V2 –
25 7309.903 7685.383 7798.488 7840.769 7862.147 H10 –
26 7532.884 7940.721 8064.431 8107.784 8133.227 D1(H6) 8130.618
27 7572.136 7986.284 8110.729 8154.747 8180.088 H11 –
28 7596.424 8014.467 8139.587 8183.926 8209.368 D3(H2) 8217.340

29-32 9795.501 10664.182 10888.697 10957.794 11022.945 D2(V1) 11018.375
33 13391.179 15079.194 15629.334 15785.073 15870.193 D2(H4) 15902.339
34 13478.796 15187.726 15748.620 15907.468 15995.592 H12 –
35 13607.028 15352.665 15928.303 16092.240 16183.641 D1(H7) 16181.519
36 13687.105 15462.125 16050.142 16214.973 16309.161 H13 –
37 14014.754 15898.428 16530.733 16705.579 16809.660 D5(H1) 16854.782
38 14082.089 15979.695 16621.093 16798.785 16905.929 H14 –
39 14250.885 16181.855 16845.211 17031.078 17145.843 D1(H8) 17128.485
40 14708.995 16744.411 17478.016 17681.173 17821.144 V3 –
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Table 2. Computed actual eigenvalues of Δμ c = −.122 +
.745i

# Level 8 Level 9 Level 10 Level 11 Predicted Dn(Typem) 24n/3 ∗ λTypem
41 14834.130 16889.618 17640.765 17850.884 17998.458 H15 –
42 14959.402 17045.341 17814.402 18031.263 18185.257 D2(H5) 18176.317
43 14977.379 17068.516 17840.036 18057.965 18212.708 H16 –
44 14977.979 17069.379 17840.983 18058.943 18213.698 D1(H9) 18161.766
45 14987.186 17082.284 17855.123 18073.616 18228.584 H17 –
46 15001.932 17101.165 17876.044 18095.412 18251.028 D3(H3) 18254.146

47-48 15416.746 17609.599 18443.159 18689.148 18868.023 D1(V2) 18793.248
49 16085.687 18419.802 19365.950 19650.959 19882.827 D1(H10) 19757.500
50 16281.024 18665.713 19648.130 19944.139 20192.717 H18 –
51 16525.107 18981.677 20009.364 20321.092 20589.538 D2(H6) 20487.873

52 16574.303 19050.999 20089.820 20403.281 20675.662 H19 –
53 16592.597 19080.588 20124.174 20437.758 20711.110 D1(H11) 20548.674
54 16597.938 19088.831 20133.808 20447.430 20721.151 H20 –
55 16636.257 19141.788 20195.192 20510.474 20787.384 D4(H2) 20706.400
56 17991.470 20860.052 22227.106 22606.649 23054.707 H21 –
57 18220.720 21192.118 22619.110 23012.838 23486.608 V4 –

58-64 20748.808 24683.116 26872.054 27437.798 28376.990 D3(V1) 27764.564

Eigenvalue counting functions N(x) and Weyl ratios W (x) of Δμ for
c = −.122 + 754i are illustrated in Figure 6.10.

Figure 6.10. Top: Eigenvalue counting function. Bottom:
Weyl ratio for level 10 eigenvalues of Δμ for c = −.122 + 754i.
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3. Computed eigenvalues for conformal measure.
(i.) Spectrum of Δν for c = .33− i.25.

Table 3. Computed actual eigenvalues of Δν c = .33− i.25

# Level 6 Level 7 Level 8 Level 9
1 0 0 0 0
2 32.147045 32.493944 33.28344 33.567551
3 48.213964 46.998041 45.831625 45.762296
4 122.46591 117.836174 120.090215 124.059287
5 221.515707 229.782687 217.016349 207.709143
6 348.275565 349.237686 336.490519 334.507733
7 402.528864 398.717183 382.160799 377.698993
8 536.065552 513.365788 488.130227 493.410108
9 876.420583 963.36787 974.702375 907.075854
10 1038.939947 1081.255888 1074.177368 1015.481251
11 1196.992559 1324.534496 1339.064483 1258.409975
12 1432.349755 1505.609269 1499.557881 1415.362104
13 1671.287945 1844.610709 1820.091867 1725.159848
14 1931.736137 2084.511213 2022.130546 1901.094616
15 2160.282968 2271.38594 2210.748616 2097.581584
16 2390.670583 2470.446017 2349.046872 2207.099921
17 2862.214873 3102.18503 3204.397413 3132.506021
18 3032.334758 3183.224372 3240.198287 3155.133143
19 3653.187355 4644.951507 4987.653933 4965.215177
20 3891.907398 4802.664106 5055.47932 5007.433061
21 4087.049651 5244.542959 5845.797103 5916.637283
22 4310.870181 5609.431657 6072.135662 6109.213514
23 4967.917359 5919.356572 6483.155425 6418.244519
24 5071.33176 6372.640313 6811.332993 6679.5298
25 5773.539558 6781.306359 7446.945858 7525.924043
26 5832.680903 7140.958951 7726.339165 7760.311456
27 6782.990767 7855.556304 8626.395028 8372.994018
28 6819.313619 8073.902679 8845.912587 8569.213931
29 7438.732021 9076.598872 9907.017257 9747.808669
30 7459.725171 9202.458558 10099.96723 9888.987375
31 8682.40089 10542.16847 11075.34404 10592.24438
32 8688.625395 10636.58729 11237.03472 10693.5242
33 9706.177386 11569.0098 12105.03168 11643.80223
34 9709.708534 11634.02093 12183.30804 11671.35646
35 10667.63625 13696.86614 14912.61044 15009.53452
36 10669.67764 13756.49353 14939.97457 15012.16227
37 11260.96297 14359.76031 16166.92427 17851.6214
38 11261.7744 14410.78132 16188.82351 17853.97145
39 13198.53503 16700.91335 19154.70775 21239.4282
40 13198.58502 16720.31099 19166.86589 21246.03279
41 14397.21269 17906.69673 22138.63227 23102.63183
42 14397.23309 17922.7418 22171.82231 23116.20459
43 15220.09027 19957.69527 24061.96944 25736.81951
44 15220.09613 19967.32679 24169.75053 25770.33133
45 18243.17265 21406.46536 25400.54444 27843.78249
46 18243.17296 21413.48319 25578.78226 27986.64662
47 19102.51281 23502.95745 26913.93495 28601.6936
48 19102.51305 23506.96232 27079.28317 28754.16174
49 19829.69063 25694.10826 28724.18477 30793.53445
50 19829.6907 25700.05814 28827.45876 30841.63357
51 22783.03703 26547.81827 31383.84427 34134.31846
52 22783.03703 26553.31359 31466.70217 34161.15367
53 23433.84958 28213.6788 33262.0093 37167.81211
54 23433.84958 28215.58649 33403.19865 37198.58281
55 25351.5334 29443.75655 33931.28181 40833.49261
56 25351.5334 29444.3795 34027.61129 40929.61047
57 27715.38255 33742.34761 40150.23673 42690.50214
58 27715.38255 33742.47023 40197.5881 43007.41972
59 30187.97798 34487.14396 40653.53005 43539.05115
60 30187.97798 34487.24285 40704.6437 43816.15511
61 30433.62543 38115.29114 43793.17644 46847.27639
62 30433.62543 38115.31519 43808.84607 46912.24644
63 32301.2602 39168.36533 45119.54855 49225.86082
64 32301.2602 39168.38327 45129.02125 49257.94419
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(ii.) Spectrum of Δν for c = −1

Table 4. Computed actual eigenvalues of Δν c = −1

# Level 9 Level 10 Level 11 Level 12 Level 13
1 0 0 0 0 0
2 60.993 59.761 60.776 59.949 60.628867
3 182.781 184.375 183.037 184.066 183.189141
4 250.142 254.048 250.815 253.467 251.225964
5 408.589 416.593 412.107 416.718 413.460382
6 607.593 598.198 608.204 601.322 607.494978
7 937.63 901.597 930.195 905.794 925.308868
8 937.63 901.597 930.195 905.794 925.308868
9 1022.231 1029.651 1024.59 1028.42 1025.052159
10 1160.736 1161.321 1166.692 1164.51 1167.417114
11 1347.226 1413.452 1361.854 1403.747 1368.444548
12 1565.244 1581.749 1568.929 1578.585 1569.386446
13 2071.629 2027.882 2086.665 2050.588 2085.253372
14 2108.431 2059.044 2127.713 2086.337 2126.473126
15 2698.402 2748.683 2759.452 2776.753 2775.995933
16 2773.467 2822.446 2847.363 2860.13 2866.581565
17 3958.772 4236.727 4115.627 4272.308 4163.937776
18 4109.522 4236.727 4226.164 4281.382 4255.618846
19 4496.357 4261.632 4453.202 4281.382 4418.306492
20 4496.357 4286.489 4453.202 4305.384 4418.306492
21 4804.91 4973.398 4832.476 4938.417 4844.527057
22 4804.91 4973.398 4832.476 4938.417 4844.527057
23 5043.498 5167.456 5164.223 5190.534 5182.9662
24 5299.332 5320.95 5399.135 5357.508 5401.490376
25 5580.047 5597.046 5600.197 5604.838 5599.106515
26 5639.196 5748.875 5760.21 5807.467 5798.602469
27 6059.609 6120.725 6332.735 6159.407 6295.939516
28 6368.979 6120.725 6332.735 6159.407 6295.939516
29 6368.979 6835.93 6445.912 6786.398 6521.592066
30 6687.094 7258.7 7094.039 7280.802 7156.022336
31 8032.96 8759.128 8643.513 8934.386 8767.016104
32 8760.168 9213.677 9169.495 9352.056 9219.785067

Eigenvalue counting functions N(x) and Weyl ratios W (x) of Δν for
c = −1 are illustrated in Figure 6.13.
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Figure 6.13. Top: Eigenvalue counting function. Bottom:
Weyl ratio for level 13 eigenvalues of Δμ for c = −1.
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(iii.) Spectrum of Δν for c = −.122 + .745i

Table 5. Computed actual eigenvalues of Δν c=-.122+754i

# Level 7 Level 8 Level 9 Level 10
1 0 0 0 0
2 261.008937 256.664994 253.711999 259.52622
3 813.033353 835.841454 818.641623 816.925874
4 1050.51323 1090.320889 1050.878724 1063.443478
5 1864.503404 1905.595532 1892.242852 1857.100836
6 1932.097398 1996.110259 2032.413754 1954.662605
7 2961.599964 2959.060298 3046.176418 3071.876939
8 3556.548564 3414.215759 3472.053116 3546.823528
9 4403.60581 4527.32098 4691.691621 4634.515807
10 4717.04317 4850.516649 5024.370658 5072.002514
11 6084.753065 5515.328777 5643.478349 5826.623251
12 6138.707034 5540.670949 5671.383262 5881.593203
13 6699.292031 7542.517574 7719.424833 7724.245096
14 7090.00968 7732.659114 7854.390363 7965.143787
15 7754.620735 11083.54177 12206.02323 11921.05164
16 8059.503222 11769.58648 12345.74849 11992.92658

Because of the large differences in weight between points of a given level
(as seen in Figure 6.10), our computational methods lose accuracy in
this case.
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7. Structure of the spectrum

There is obviously a great deal of structure to the spectrum of the equilibrium
Laplacian Δμ. As noted in [RT09] for the basilica, the eigenvalue counting function
has the asymptotic behavior

(7.1) N(t) ∼ t
k

k+1 as t → ∞,

and moreover the Weyl ratio W (t) = N(t)

t
k

k+1
approaches a multiplicatively periodic

function

(7.2) W (t) = ϕ(t) + o(t) as t → ∞

with

(7.3) ϕ(21+
1
k t) = ϕ(t).

Here ϕ is bounded and bounded away from 0. This follows from results of [KL93]
in the general case by the same argument as in [RT09]. Informally, if we compare
the eigenfunction u(x) and u(2x), then we double the number of eigenvalues and

multiply the eigenvalue by 21+
1
k and by 2(1+

1
k )( k

k+1 ) = 2. We see this asymptotic
periodic behavior in the graphs of W (t) in Figures 6.8 and 6.10. In contrast, Figure
6.13 shows that this is not the case for the conformal Laplacian. The data suggests
the following:

Conjecture 7.1. If λ is an eigenvalue of Δμ, then

(7.4) N(21+
1
k λ) = 2N(λ) or 2N(λ)− 1.

Note that N(λ) is the number of the last eignfunction in the λ-eigenspace. For

example, for the basilica λ4 = 196.54 . . ., λ7 = λ8 = 555.89 ≈ 2
3
2λ4, λ14 = λ15 =

λ16 = 1572 ≈ 23λ4, λ27, . . . , λ32 = 4445.29 ≈ 2
9
2λ4, λ54, . . . , λ64 = 12554.04 ≈

26λ4, λ107, . . . , λ128 = 35445.04 ≈ 2
15
2 λ4, λ214, . . . , λ256 = 98999.38 ≈ 29λ4. Also,

λ13 = 1133.2, . . ., λ25 = λ26 = 2
3
2λ13, λ49 = λ50 = λ51 = 9.055.3 ≈ 23λ13,

λ97, . . . , λ102 = 25566.53 ≈ 2
9
2λ13 λ193, . . . , λ203 = 71771.37 ≈ 26λ13. In the first

sequence we always have N(2
3
2λ) = 2N(λ), while the second sequence alternates

between that and N(2
3
2λ) = 2N(λ)− 1.

We can speculate some more as to when the two alternatives in (7.4) occur.

Suppose λ is a primitiveH eigenvalue. Then the valuesN(2(1+
1
k )jλ) = bj will follow

the pattern bj+1 = 2bj − εj (εj = 0 or 1) with εj periodic of period k. Moreover,
(ε0, ε1, . . . , εk−1) will depend on #(λ)mod 2k. Table 7.1 shows the correspondence
for k = 2 and 3.

For λ a primitive V eigenfunction a similar statement holds, but the correspon-
dence is different. We don’t have a lot of data, but it appears that bj = 2jb0 when
#(λ) ≡ 0 mod 2k. We note that eigenvalue #53 for the basilica is a primitive
eigenvalue of H type, but its derived spaces have multiplicities equal to a V type,
and its ε sequence is (0, 1), which is the same as for V types.

Assuming the above is correct, we may compute values for the Weyl ratio
W (2(1+

1
k )j)λ and ϕ(λ) for these eigenvalues. For example, λ2k is the first primitive

V eigenvalue, with N(2(1+
1
k )jλ2k) = 2j2k and W (2(1+

1
k )jλ2k) =

2k

λ
( k
k+1

)

2k

= ϕ(λ2k).
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Table 7.1. (ε0, ε1, . . . , εk−1) given #(λ)mod 2k, k = 2, 3.

#(λ)mod 4 (ε0, ε1) #(λ)mod 8 (ε0, ε1, ε2)
0 (0,0) 0 (0,0,0)
1 (1,1) 1 (1,1,1)
2 (1,0) 2 (1,0,0)
3 (0,1) 3 (1,0,1)

4 (1,0,0)
5 (0,1,1)
6 (0,1,0)

7(no data) (0,0,1)

From the multiplicity formula in Theorem 7.3 we find

ϕ−(λ2k) = lim
ε→0+

ϕ(λ2k − ε) =
2k −

(
2k−2
2k−1

)

(λ2k)
k

k+1

.

In Figures 6.8 and 6.10 we see these values as local maxima and minima. The same
will be true for other primitive V eigenspaces, but quantitatively the effects may
be much smaller. On the other hand, λ2 is the first primitive H eigenvalue, with

N(2(1+
1
k )jλ2) = 2 · 2j and W (2(1+

1
k )jλ2) = 2

λ2

( k
k+1 ) = ϕ(λ2), but this appears to

be a local minimum, and similarly for the other primitive H eigenvalues.

Conjecture 7.2. There are pairs of consecutive primitive eigenvalues (Hm, Vn) or
(Vn, Hm) for every n and the appropriate m, and those are the only pairs of con-
secutive primitive eigenvalues. Then Dj(Hm), Dj(Vn) are consecutive eigenvalues
for all j. In the case n = 1, λ ∗ 2k+j is Dj(V1).

We can explain the multiplicities as follows.

Theorem 7.3. Let λ be a simple primitive eigenvalue associated to a V eigen-
function, and let 2n(1+

1
k )λ be the n-th derived eigenvalue. Then the multiplicity

mult(2n(1+
1
k )λ) of the eigenspace is at least

(7.5) 2j
(
2mk − 2mk−1

2k−1

)
, n = mk + j, j = 0, 1, . . . , k − 1.

Proof. The λ-eigenfunction u(x) is supported in the vertical segment and has sym-
metry type −+. Then u(2x) is supported in the two vertical segments that are
separated by the central vertical segment, so we can restrict it to either vertical
segment and still have an eigenfunction. Thus the multiplicity is at least 2 when
n = 1. A similar argument shows that the number of vertical segments doubles as n
increases up to k−1, since each vertical segment gets mapped to two distinct vertical
segments under P−1. In terms of the parameterization, the central vertical segment

is the union of two intervals, [ 1
2(2k−1)

, 2
2(2k−1)

]∪ [ 2k

2(2k−1)
, 2k+1
2(2k−1)

]. After n iterations

of P−1 this is mapped into the union of 2m+1 intervals [ 1+l(2k−1)
2n+1(2k−1)

, 2+l(2k−1)
2n+1(2k−1)

] for

0 ≤ l < 2n+1. Note that these are exactly the shortest intervals in Γ′
n+1. For n < k

they pair up to give 2n vertical segments. However, when n = k there are 2k − 2
pairs of intervals that make up vertical segments, but the 4 intervals corresponding
to l = 1, 2, 2k, 2k+1 that lie in the central vertical segment form a single connected
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region (in this case the intersection of the central vertical segment and the central
horizontal segment).

Figure 7.1. Left: The 11 connected components for k = 2, n = 4.
Right: The corresponding regions on the basilica.

Thus the lower bound for multiplicity when n = k is 2k − 1. The pattern then
repeats, with

(7.6) #(mk + j) =

{
2#(mk + j − 1) if j = 1, . . . , k − 1,

2#(mk + j − 1)− 1 if j = 0,

where #(n) denotes the number of connected components in the support of u(Pnx).
See Figures 7.1 and 7.2. Then #(n) is given explicitly by (7.5). �

There are few examples of eigenfunctions that display more complex behavior
than outlined above, most notably 212-213 on the basilica. As the study of these
examples is ongoing, more details may be found online [Flo08].

An immediate consequence of the high multiplicities in Theorem 7.3 is the fol-
lowing observation about the periodic function ϕ in the Weyl ratio (7.2).

Corollary 7.4. The function ϕ in (7.2) is discontinuous; hence in particular it is
not constant.

Proof. Let λ be a simple primitive eigenvalue of V type. Then (7.5) implies

N(2n(1+
1
k )λ)−N(2n(1+

1
k )λ− ε) ≥ (7.5) for any ε > 0. For simplicity take n = mk.

Then W (2m(k+1)λ)−W (2m(k+1)λ− ε) ≥
2mk− 2mk−1

2k−1

(2m(k+1)λ)
k

k+1
>

2mk( 2k−2

2k
)

2mkλ
k

k+1
, which implies

that ϕ has a jump discontinuity at t = λ of at least (2k − 2)2−kλ−( k
k+1 ). �

We may interpret the asymptotic behavior (7.1) as saying that J is a space of
dimension k in the resistance metric and Δμ is an operator of order k + 1. The
resistance metric R(x, y) is defined by

(7.7) R(x, y)−1 = inf {E(u, u) : u(x) = 0 and u(y) = 1}.
While it is tricky to compute R(x, y) exactly, it is not difficult to obtain order of
magnitude estimates. We claim that if x and y are adjacent vertices in Γm, then
R(x, y) is comparable to 2−

m
k . To see this we first observe that we can replace E by

E(j) in (7.7) because of the estimate (3.17). The function that achieves the minimum
in (7.7) is the harmonic extension of u on Vm, so E(j)(u, u) = Em(u, u) ≥ 2

m
k (here

j ≡ m mod k) because of the contribution from the edge joining x and y. This gives
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Figure 7.2. Top: The 7 connected components for k = 3, n = 3.
Bottom: The corresponding regions on the rabbit.

an upper bound for R(x, y) of a multiple of 2−
m
k , and we obtain a similar lower

bound simply by filling in the values u(z) = 0 for all the other vertices z ∈ Vm.
The measure μ of the subset of J corresponding to the intervals in the parameter

space connecting x and y is on the order of 2−m. This translates into μ(Br(x)) ∼ rk,
where Br(x) is the ball of radius r in the resistance metric centered at x. This says
the measure μ is k-dimensional. We may cover J with a multiple of 2m such
subsets, each with diameter on the order of 2−

m
k , and this can be used to show that

J has box dimension and Hausdorff dimension k in the resistance metric.
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Theorem 7.5. Let λ be a primitive eigenvalue with an eigenfunction u of type H
(resp. V). Then u is supported on the central horizontal (resp. vertical) segment.

Proof. By symmetry we can restrict u to any horizontal (resp. vertical) segment and
still obtain a λ-eigenfunction. If u is not supported in the central segment, then we
can replace u by ũ supported in a disjoint pair of segments that are permuted under
RV (resp. RH). By symmetry we have ũ(RV x) = ũ(x) and ũ(RHx) = −ũ(RHx)
(resp. interchange RV and RH). We can then define yet another λ-eigenfunction
by multiplying ũ by −1 on one of the two segments. This eigenfunction has sym-
metry type −− and hence is derived, and this contradicts the assumption that λ is
primitive. �

Note that this theorem applies to primitive eigenfunctions of higer multiplicity.
Since those spaces may have eigenfunctions that are linear combinations of H and
V types, the theorem does not say anything about the supports of all primitive
eigenfunctions. In section 8 we will show that the support of any eigenfunction
cannot be all of J .

Because of the rich structure of the eigenvalues and eigenfunction of Δμ, one
is tempted to believe that some form of spectral decimation is present that would
explain everything. While we cannot entirely rule this out, it is easy to see that
spectral decimation does not hold for our sequence of graphs. Roughly speaking,
spectral decimation would mean that eigenfunctions of the discrete Laplacians on
Γm would extend to eigenfunctions of Δμ on J , with eigenvalues changing in a
predictable and monotonic fashion. However, the eigenfunctions on Γm for small
m favor the +− and ++ types, since the points x of V ′

m are mostly identified
with RV x. For example, for the basilica, there are no odd functions under RV for
m = 1, 2 and just 1 out of 8 for m = 3. But the data shows that eigenfunction
4 already has a −+ symmetry type. The situation is perhaps similar to the case
of the pentagasket [ASST03]. We note that [RT09] describes a Laplacian on the
basilica that does enjoy spectral decimation, but it is built from a different energy.

Two other features of the spectrum of the Laplacians (these are shared with
Δν) are apparent from the data: spectral gaps and spectral clusters. Spectral gaps
mean there is a sequence {nj} with

(7.9)
λnj+1 − λnj

λnj

≥ r > 1.

In other words, not only is the gap between successive eigenvalues large, but it is
large relative to the eigenvalues (this rules out the Laplacian on the sphere, for
example). In fractals with spectral decimation, such as the Sierpinski gasket and
the Vicsek set, it is possible to prove the existence of spectral gaps ([FS92], [Str06],
[Zho09], [Zho10]). For the pentagasket, as here, there is only experimental evidence
[ASST03]. Spectral gaps seem to occur right after derived vertical eigenspaces.

Spectral clustering is the phenomenon of distinct eigenvalues being very close.
In its extreme form, which we believe holds in our case, it would say

(7.10) ∀n∀ε > 0 ∃ an interval I of length ε containing n distinct eigenvalues.

For example, in the basilica between eigenfunction 185-189 there are 3 distinct
eigenvalues in the interval [68978.39921, 68978.42095] of length .02174. One is
tempted to suppose that this might be a single eigenspace with the differences
in eigenvalues due to a combination of round-off errors and the inaccuracy due to
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the approximation process. However, the data remains consistent over several levels
of approximation, so we are inclined to believe the eigenvalues are indeed distinct.
In the case of the Vicsek set, spectral clustering will be proved in [CSW09]. It does
not hold for the Sierpinski gasket. Experimental evidence in [ASST03] suggests
that it holds for the pentagasket.

In contrast to the equilibrium Laplacian, the conformal Laplacians Δν do not
exhibit the same amount of spectral structure. Nevertheless, there are some in-
teresting features that we should mention. First we discuss two examples of qua-
sicircles, whose eigenfunctions are displayed in Figure 6.12 (c = .33 − i.25) and
online (c = .24) [Flo08] . In the case of the ordinary circle (c = 0), after the trivial
0-eigenspace of constants the eigenspaces have multiplicity 2 with eigenfunctions
cos2πkx and sin2πkx with eigenvalue (2πk)2. In both examples the eigenfunctions
(in external ray parameterization) look like perturbations of the sines and cosines,
at least for small values of k. But the multiplicity 2 eigenspaces are replaced by
pairs of multiplicity 1 eigenspaces. In the second example, the horizontal and verti-
cal reflections in the parameter space preserve |z| on J , hence they are symmetries
of the measure ν and thus of Δν as well. So each eigenfunction is either symmet-
ric or skew-symmetric under each symmetry. When k is odd the eigenspaces are
symmetric/skew-symmetric and skew-symmetric/symmetric, while when k is even
the eigenspaces are symmetric/symmetric and skew-symmetric/skew-symmetric.
There does not seem to be a pattern to predict which of the two has the lower
eigenvalue. In the first example there are no longer horizontal and vertical symme-
tries, only z → −z (t → t + 1

2 in the ray parameterization). Nevertheless the first
few eigenfunctions closely resemble the sines and cosines.

The eigenfunctions of the conformal Laplacian on the basilica and rabbit are
shown in Figures 6.14 and 6.15 and resemble the eigenfunctions of the equilibrium
Laplacian in Figures 6.9 and 6.11, at least near the bottom of the spectrum. The
conformal measures are preserved by the horizontal and vertical reflections, but
there are no longer derived eigenspaces, since the action of P distorts these mea-
sures. In both cases eigenfunction #2 is of H type with reduced support, but
eigenfunction #3 only approximates a doubling of #2 and has full support. It is
symmetric under both reflections. Basilica #4 is of V type, while #11 is of both H
and V types (it is skew-symmetric under both reflections). We also see eigenspaces
of multiplicity two, for example #7 and #8, or #21 and #22, corresponding to
pairs of regions illustrated in Figure 7.1 for which |z| is identical. We never see
multiplicity higher than two because among such corresponding regions there are
never more than two with the same |z| values. On the rabbit we see H types
(#2) and V types (#6), but unfortunately we have not been able to get reliable
accuracy higher up in the spectrum to see the other types of behavior, but these
undoubtedly occur. Already #15 and #16 show puzzling behavior, as they are
neither symmetric nor skew-symmetric with respect to the z → −z symmetry, yet
they have different eigenvalues so they do not form a multiplicity 2 eigenspace. It
would take higher resolution than we can attain to resolve the ambiguity, and for
this reason we do not attempt to go higher up in the spectrum.

Finally we consider eigenfunctions for the conformal Laplacian on a distorted
basilica (pictures can be found in [Flo08]). This example does not have horizontal
and vertical symmetries (as also is the case for the quasicircle in Figure 6.12). The
first few eigenfunctions appear to be perturbations of the ones in Figure 6.14. We
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note that some, like #2, appear to have the same restricted support as H type
eigenfunctions. We do not know how to explain this or why there do not appear
to be any with the restricted support of V type eigenfunctions. It appears that all
eigenspaces have multiplicity 1.

Another striking observation that we are not presently able to explain is the
zigzag behavior of the restriction to the central circle of the eigenfunctions of the
equilibrium Laplacian. This behavior is more striking for the rabbit than for the
basilica, which leads us to speculate that there might be a general statement for all
eigenfunctions in the limit as k → ∞. (We also see the same behavior for #2 for
the conformal Laplacian.) More generally, it would be interesting to understand
the behavior of eigenfunctions of a fixed # and k → ∞. In the case of the Viscek
sets discussed in [CSW09], it is possible to answer such questions. Unfortunately,
our numerical methods are not adequate to understand even the case k = 4.

8. Circles and loops

We single out two types of subsets of J that we call circles and loops. Suppose x
is a point in Vm \ Vm−1. Then there are k points x1, x2, . . . , xk in V ′

m in increasing
order that are identified to obtain x. The portion of J parameterized by the
interval [xj , xj+1] (j = 1, . . . , k− 1) is called a loop. Note that there are k− 1 loops
attached at the point of J parameterized by x. The length of the loops is defined

to be xj+1 − xj =
2j−m

2k−1
.

The central circle is parameterized by the complement (essentally a Cantor set)
of the interior of all loops. Note that V ′

1 has 2k points that divide C into 2k
intervals. Of these, 2k − 2 correspond to loops. After we remove these, we are left
with the two intervals [ 1

2(2k−1)
, 1
2k−1

] and [ 12 +
1

2(2k−1)
, 12 +

1
2k−1

]. The central circle

has parameters lying in the union of those intervals. (Note that if k > 2 there will
be isolated points outside those intervals that are identified with the endpoints, but
we do not need to include these in the parametrization.) More generally, a circle
is parametrized by a Cantor set obtained by all remaining interiors of loops from a
pair of intervals [x, y], [y′, x′], where x, y and y′, x′ are consecutive but not identified
points in Vm and x is identified with x′ and y is identified with y′. We define the
length of the circle to be 2(y − x) = 2

2m(2k−1)
. It is not hard to see that the circles

on J are indeed topological circles, and any two are either disjoint or intersect at
a single point. There are a countable number circles and their union is dense in J ,
but the union is not all of J , as it has μ-measure zero.

Suppose u is a function defined on the central circle. It is natural to extend u
to ũ on J by making it constant on all loops, as this clearly minimizes energy. We
can easily compute the energy En(ũ, ũ). It is natural to separate it into two terms
corresponding to the initial intervals I = [ 1

2(2k−1)
, 1
2k−1

] and I ′ = I + 1
2 . Note that

I does not subdivide in V ′
2 , . . . , V

′
k, and in V ′

k+1 it splits into the two outer intervals

of length 1
2k
|I| and k − 1 loops that do not contribute to the energy. This process

then repeats. Thus the parameter space of the I half of the central circle is exactly
a linear Cantor set with dissection ratio 1

2k
. In V ′

mk+1 we have 2m intervals of

length 1
2mk |I|, with consecutive endpoints identified in Vmk+1. This leads to a new

parameterization of half of the central circle ϕ(s) with s ∈ [0, 1] as follows: map
the values [ l

2m ] to the points in J parameterized in order by the points in Vmk+1

at the endpoints of the intervals. At each step, passing from m to m+ 1, we insert
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one new point in V(m+1)k+1 in between each consecutive pair of points in Vmk+1

from the previous step, so the definition is consistent going from m to m+ 1. This
defines ϕ(s) on all dyadic rationals, and we extend it by continuity to [0, 1]. A
similar parameterization works for the other half on [−1, 0], and the two join up at
the endpoints to give a parametrization of the central circle by a standard circle of
circumference 2.

Now we compute for the central circle

(8.1) Emk+1(ũ, ũ) = 2mk+1(2k − 1)2m
2m−1∑
l=−2m

|u(ϕ( l + 1

2m
))− u(ϕ(

l

2m
))|2,

so

(8.2)
Emk+1(ũ), ũ = 2

1
k (2k − 1)

∑2m−1
l=−2m |u(ϕ( l+1

2m ))− u(ϕ( l
2m ))|2

= 2
1
k (2k − 1)Ẽ(u ◦ ϕ, u ◦ ϕ),

where Ẽm is the standard dyadic energy on [0, 1]. Taking the limit as m → ∞ yields

(8.3) E(1)(ũ, ũ) = 2
1
k (2k − 1)Ẽ(u ◦ ϕ, u ◦ ϕ),

where Ẽ is the standard energy (H1 Sobolev space) on the parameter space. Note
that Emk+j(ũ, ũ) = Emk+1(ũ, ũ) for 1 ≤ j ≤ k because no new points are added to
the parametrization of the central circle in the passage from Vmk+l to Vmk+l+1 for
1 ≤ l ≤ k − 1. By (3.11)

(8.4) Emk+j(ũ, ũ) = 2(
1−k
k )(j−1)Emk+1(ũ, ũ),

so

(8.5) E(j)(ũ, ũ) = 21−j( k−1
k )(2k − 1)E(u ◦ ϕ, u ◦ ϕ)

(here we use j = k rather than j = 0 for E(0)). Thus

(8.6) E(ũ, ũ) = ckE(u ◦ ϕ, u ◦ ϕ)
for

(8.7) ck =
2(2k − 1)(1− 21−k)

k(21−
1
k − 1)

.

More generally, suppose we consider a circle Cn of length 2
2m(2k−1)

that arises

in Vm (the central circle has m = 1). Again we may parameterize it by [−1, 1] and
write ϕn for the parametrization map. If u is defined on the circle and ũ is its
harmonic extension, then

(8.8) E(ũ, ũ) = 2
m−1

k ckE(u ◦ ϕn, u ◦ ϕn).

Let C0, C1, C2, . . . be the list of all circles in J , with C0 the central circle, and let
m(n) be the value of m assoicated with Cn. The following result was established
for k = 2 in [RT09]:

Theorem 8.1. Let u be a continuous function on J . Then u ∈ dom E if and only
if u ◦ ϕn ∈ dom Ẽ for every n and

(8.9) E(u, u) =
∞∑

n=0

2
m(n)−1

k ckẼ(u ◦ ϕn, u ◦ ϕn)

is finite.
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Proof. Suppose u ∈ dom E . Let ũN denote the harmonic extension of the restric-
tion of u to C0 ∪ C1 ∪ . . . ∪ CN . Then by the previous argument

(8.10) E(ũN , ũN ) =
N∑

n=0

2
m(n)−1

k ckẼ(u ◦ ϕn, u ◦ ϕn).

It is routine to show E(u, u) = limN→∞ E(ũN , ũN ), so (8.9) holds; in particular, the

sum is finite and u ◦ ϕn ∈ dom Ẽ for each n.
Conversely, suppose u is continuous and the sum in (8.9) is finite. Then if we

define ũN as above, the previous argument shows that ũN ∈ dom E and (8.10)
holds. Then ũN is a Cauchy sequence in energy and so converges to an element in
dom E that we may identify with u. �

There is a close relationship between the set of circles and the supports of the
derived vertical eigenspaces as described in the proof of Theorem 7.3. Each of the
regions contains a circle and some loops attached to it (see Figures 7.2 and 7.4).
Each circle occurs infinitely often, with fewer attached loops as the order of the
derived eigenvalue increases.

We note that P (k) maps C0 to C0 in a two-to-one fashion and is conjugate
(ϕ−1

0 P (k)ϕ0) to the doubling map on the parameter circle. Since the doubling map

multiplies the standard energy Ẽ by 4, it follows that the contribution from C0 to
the total energy is also multiplied by 4:

(8.11) ckẼ(u ◦ P (k) ◦ ϕ0, u ◦ P (k) ◦ ϕ0) = 4ckẼ(u ◦ ϕ0, u ◦ ϕ0).

One can also derive (8.11) directly from the definition. Although (8.11) appears
to conflict with (3.26), it has to be noted that the inverse image of C0 under P (k)

is much larger than C0, and the entire inverse image contributes to the left side
of (3.24). In passing from the global energy identity to the local one the value
is reduced by a factor of 1

2k−1 , so the factor 2k+1 in (3.24) becomes 4 in (8.11).
There are similar but more complicated identities relating to the transformation of
energies on other circles under the iteration of P .

It is useful to decompose the sum in (8.9) into the contributions from circles
with m(n) in a given residue class modulo k. So we define

(8.12) Ẽ(j)(u, u) =
∑

m(n)≡j(k)

2
m(n)

k (2k − 1)Ẽ(u ◦ ϕn, u ◦ ϕn) for j = 0, 1, . . . , k − 1.

Now suppose we fix a circle Cn with m(n) ≡ j(k) and let ũn be the harmonic
extension of u|Cn

. The analogs of (8.1), (8,2), and (8.3) are

Em(n)+mk(ũn, ũn) = 2m(n)+mk(2k − 1)

2m−1∑
l=−2m

|u(ϕn(
l + 1

2m
))− u(ϕn(

l

2m
))|2,

(8.13)

Em(n)+mk(ũn, ũn) = 2
m(n)

k (2k − 1)Ẽm(u ◦ ϕn, u ◦ ϕn)(8.14)

and

(8.15) E(j)(ũn, ũn) = 2
m(n)

k (2k − 1)Ẽm(u ◦ ϕn, u ◦ ϕn).

There will be no new subdivision points in Cn when we pass from m(n) + mk to
m(n) +mk + p for p ≤ k − 1, so

(8.16) Em(n)+mk+p(ũn, ũn) = Em(n)+mk+p(ũ, ũ)
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so

(8.17) E(j+p)(ũn, ũn) = 2
m(n)+(1−k)p

k (2k − 1)Ẽ(u ◦ ϕn, u ◦ ϕn) for 0 ≤ p ≤ k − 1.

If we sum over all circles and sort according to residue classes of m(n), we obtain,
for 0 ≤ q ≤ k − 1,

(8.18) E(q)(u, u) =

k−1∑
j=0

2(
1−k
k )[q−j]Ẽ(j)(u, u),

where we interpret [q− j] as q− j if j ≤ q and k+ q− j if j > q. Note that for each
fixed j the values of [q − j] cycle through the integers 0, 1, . . . , k− 1. By averaging
(8.18) over q we recover (8.9).

We also note that, although each circle has μ-measure zero, we can express the
integral of continuous function in terms of the ordinary integrals of its restrictions
to all the circles as a limit of sums. Suppose we fix a circle Cn with m(n) = m.
The length of the circle is 2

2m(2k−1)
, and there are two intervals of half this length

in C \ Vm that parameterize Cn and all the loops to which they attach. We may
approximate the integral over these intervals by

(8.19)
1

2m(2k − 1)

∫ 1

−1

f(ϕn(t))dt.

The same approximation is valid for C \ Vm+j for j ≤ k, but in C \ Vm+k the
intervals subdivide and only two intervals of length 2

2m+k(2k−1)
parameterize Cn

and some of the loops that attach to it. In general, in C \ Vj with j ≥ m, the

intervals representing Cn will be subdivided l = [ j−m
k ] times, and each time the

total length is reduced by a factor of 1
2k−1 . Thus

(8.20)
∑

m(n)≤j

1

2m(n)+[
j−m(n)

k ](k−1)(2k − 1)

∫ 1

−1

f(ϕn(t))dt

is the approximation at level j. It is easy to see that (8.20) converges to
∫
J fdμ as

j → ∞.

9. Eigenfunctions on loops and circles

Consider a loop L of length 2j−m

2k−1
. We regard the point z0 where the loops join

the rest of J as the boundary point. In the parameter space z0 corresponds to the
two boundary points of the interval I(L) that parameterizes L. Everything else is
interior. It makes sense to consider the eigenvalue equation on L:

−Δμu = λu on L \ z0,(9.1)

u(z0) = a.(9.2)

If there exists a nonzero solution with a = 0, we say that λ is a Dirichlet eigenvalue
on L. The set of Dirichlet eigenvalues forms a sequence

(9.3) 0 < λ1(L) ≤ λ2(L) ≤ . . . → ∞.

Let λn = λn(L), where L is a loop of the largest length (m = 1, j = 1) 1
2k−1

. Then

for a general loop we have from (4.8) that

(9.4) λn(L) = 2(1+
1
k )(m−j)λn,
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and the associated eigenfunctions are mapped to each other by appropriate it-
erations of P . We may regard these as similarities (they are similarities on the
parameter space). Note that for any positive fixed λ, λ1(L) > λ for all sufficiently
small loops (equivalently, all but a finite number of loops), and this implies that λ
is not a Dirichlet eigenvalue for such loops.

It is easy to see that (9.1) has a unique solution for any λ that is not a Dirichlet
eigenvalue. In particular, if a = 0, then u ≡ 0. Let uλ denote the unique solution for
a = 1 when L is a loop of largest length 1

2k−1
. Then the solution to the eigenvalue

equation (9.1) on a general loop must have the form

(9.5) u(z0)u
2(1+

1
k

)(j−m)λ
◦ SL

provided λ �= 2(1+
1
k )(j−m)λn for any n, where SL denotes the similarity mapping

of the small loop to the large loop.
Now suppose u is a global λ-eigenfunction on J . Then for any sufficiently small

loop, u has the form (9.5).

Theorem 9.1. Let u be a global eigenfunction of Δμ on J , and suppose u is even
or odd with respect to RH and RV . Then there are loops on which u vanishes
identically.

Proof. It suffices to prove this for primitive eigenfunctions, in which case u has
either +− or −+ symmetry. Hence it is odd with respect to either RH or RV .
Thus u vanishes on the fixed points of RH or RV , and there are infinitely many
of these. If we choose a sufficiently small loop having one of these fixed points as
boundary point z0, then u(z0) = 0 and (9.5) shows that u vanishes on the loop. �
Conjecture 9.2. The same conclusion holds for all eigenfunctions.

The only way this can fail is for an eigenspace of nontrival multiplicity when
u is a linear combination of H and V primitive eigenfunctions. This happens
on the basilica for a primitive eigenvalue in numbers 212 and 213, yet the two
eigenfunctions have loops where they both vanish. It also happens all the time for
derived eigenvalues, but in all the examples the primitive eigenfunctions are locally
equivalent to derived eigenfunctions.

Next we consider the restrictions of global eigenfunctions to circles. For simplic-
ity we just consider the central circle C0. In order to proceed we need to make the
following assumptions on the eigenvalue λ:

(9.6) λ �= 2(1+
1
k )(m−j)λn

for any n and any m and j ≤ k− 1. This makes (9.5) valid on any loop. Since J is
the union of C0 and all loops that attach to it, it follows that any λ-eigenfunction
is uniquely determined by its restriction to C0. (Of course there are eigenfunctions
which vanish on C0, so (9.6) does not always hold.) It should be possible to express
the eigenvalue equation entirely in terms of the values of u on points in C0. We
will indicate, at least in principle, how this can be done.

The points in Vmk+1 ∩ C0 are paramterized by ϕ( l
2m ) for 0 ≤ l < 2m. Then

Vmk+j ∩ C0 = Vmk+1 ∩ C0 for j = 1, . . . , k. In other words, no new points in C0

are created in the next k − 1 subdivisions, because the intervals in the external
ray parametrization between consecutive points in C0 are the smallest intervals in
V ′
m. For a fixed value of l, the neighbors of x = ϕ( 1

2m ) in Vmk+j ∩ C0 are exactly

ϕ( l−1
2m ) and ϕ( l+1

2m ). Of course x will have 2k − 2 neighbors in each of the graphs
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Γmk+j that lie on the loops that attach at x, and these neighbors will vary with
j. For each loop there will be exactly four such neighbors. In Γm we denote the
neighbors y1, . . . , yk−1 and z1, . . . , zk−1, where yj and zj lie on the same loop and
have distance 1

(2k−1)2mk+j from x in the external ray parametrization. These (yj and

zj) are also neighbors in Γmk+2,Γmk+3, . . . ,Γmk+j, but in Γmk+j+1 their intervals
get subdivided and we obtain new neighbors y′j and z′j in the same loop at distance

1
(2k−1)2(m+1)k+j to x. These remain neighbors in Γmk+l for j < l ≤ k.

Recall that we are using the discrete energy 1
k (Emk+1(u, v)+ Emk+2(u, v)+ . . .+

E(m+1)k(u, v)) to approximate E(u, v), and the weight assigned to each point in

V(m+1)k to approximate μ is 2−(m+1)k. Thus the approximate Laplacian Δ(m+1)k

is given by

(9.7) −Δ(m+1)ku(x) = 2(m+1)k 1

k

k∑
j=1

2(
1−k
k )(mk+j)Emk+j(u, v),

where v is defined on V(m+1)k by v(y) = δxy. Now

(9.8)
Emk+1(u, v) = (2k − 1)2mk+1[(2u(x)− u(ϕ( l+1

2m ))− u(ϕ( l−1
2m )))

+
∑k−1

p=1 2
−p(2u(x)− u(yp)− u(zp))],

and in general, for 1 ≤ q ≤ k,

Emk+j(u, v) = (2k − 1)2mk+1[2u(x)− u(ϕ(
l + 1

2m
))− u(ϕ(

l− 1

2m
))(9.9)

+

k−j∑
p=1

2−p(2(u(x)− u(yp)− u(zp)))

+

k−1∑
p=k−j+1

2k−p(2(u(x)− u(y′p)− u(z′p)))].

Substituting (9.9) into (9.7) and collecting terms we obtain

−Δ(m+1)ku(x)

= 2(m+1)k+1(2k − 1)
1

k
[(

k∑
j=1

2j(
1+k
k ))(2u(x)− u(ϕ(

l+ 1

2m
))− u(ϕ(

l − 1

2m
)))

+

k−1∑
p=1

2−p(

k−p∑
j=1

2j(
1−k
k ))(2u(x)− u(yp)− u(zp))

+
k−1∑
p=1

2k−p(
k∑

k−p+1

2j(
1−k
k ))(2u(x)− u(y′p)− u(z′p))].

(9.10)

This, of course, can be simplified. But the key point is that if u is a λ-
eigenfunction where λ satisfies the assumption (9.6), we can use (9.5) to express all
the terms u(yp),u(zp),u(y

′
p), and u(z′p) as multiples of u(x). Thus

(9.11) −Δ(m+1)ku ≈ λu
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may be written as

(9.12) 2(m+1)kAk(2u(x)− u(ϕ(
l + 1

2m
))− u(ϕ(

l− 1

2m
))) ≈ (λ+Bk(x,m, λ))u(x)

for constants Ak and Bk. Note that Bk depends on x because the lengths of the
loops that attach to x vary. More precisely, it depends only on the level where x
first appears. Bk also depends on λ via (9.5), and this is a nonlinear dependence.
Of course (9.12) is only approximately true, and what we are interested in is the
limit as m → ∞. We expect that the limit will be an eigenvalue equation (the
eigenvalue will depend on λ in a nonlinear fashion) for u ◦ ϕ for a Laplacian built
from the standard energy and some new measure that also depends on λ.

A simple special case is that of λ = 0, or harmonic functions. While there are
no global harmonic functions on J , there are piecewise harmonic functions that
enable us to describe the Green’s function. Let us fix two points z0, z1 in J , and
to begin we will assume that both are points on the same circle Cn of length Ln,
z0 = ϕn(t0), z1 = ϕn(t1). We construct a function G(t) on the parameter circle so
that −G′′ = δt1 − δt0 . This only determines G up to an additive constant, so we
adjoin the arbitrary condition G(t0) = 0. It is easy to see that

(9.13) G(t) =

{ 1
Ln

(t− t0)(Ln − t1 + t0) if t0 ≤ t ≤ t,
1
Ln

(Ln − t+ t0)(t1 − t0) if t1 ≤ t ≤ Ln + t0

(here G is extended to be periodic of period Ln). Note that G(t0) = G(Ln+t0) = 0

and both expressions give G(t1) =
(t1−t0)(Ln−t1+t0)

Ln
, so G is a piecewise linear and

continuous, and the jumps in G′ yield −G′′ = δt1 − δt0 .
Next we transfer G to J by defining

(9.14) G̃(ϕn(t)) = G(t)

and making G̃ constant on all loops that attach to Cn. We may give a more explicit
description of G̃ in terms of the external ray parametrization. The circle Cn is
parameterized by a pair of Cantor sets whose extremities are identified, together
with some discrete points (when k ≥ 3) identified with some points on the Cantor
set. Call this set C ′

n. The complement of C ′
n in the external ray parameter circle is a

countable union of intervals ∪Ij , where the endpoint aj , bj of each Ij are identified.
Of course the interval Ij parametrizes the interior of a loop that attaches at the
endpoints, so

(9.15) G̃(x) = G̃(aj) for x ∈ Ij , aj ∈ Cj .

Note that (9.14) and (9.15) together define G̃ on J . To show the dependence on

z0, z1 and n we write G̃n(z0, z1)(x).

Because G̃ is constant on loops, only the first term in (9.10) is nonzero, so

(9.16) −Δ(m+1)kG̃0(z0, z1)(x) = Bk2
mk(2G(

l

2m
)−G(

l+ 1

2m
)−G(

l − 1

2m
))

if x = ϕ0(
l

2m ), and −Δ(m+1)kG̃0(z0, z1) vanishes outside C0. Thus

(9.17) −ΔμG̃0(z0, z1) = Bk(δz1 − δz0).

A similar expression holds for any circle Cn.
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We may now construct a Green’s function Gz(x) for any point z ∈ J that
satisfies

(9.18) −ΔμGz = δz − δz0 and Gz(z0) = 0

where z0 = ϕ0(0) is a fixed base point. For simplicity we first describe the case
where z belongs to a circle. Then there is a unique chain of circles C0, Cn1

, Cn2
, . . . ,

CnN
and points z0, z1, . . . , zN = z such that zj and zj+1 both belong to Cj (this

means zj = Cj−1 ∩ Cj for 0 < j < N). It is easy to see that

(9.19) Gz =
1

Bk
(G̃0(z0, z1) +

N∑
j=1

(G̃nj
(zj , zj+1)− G̃nj

(zj , zj+1)(z0)))

satisfies (9.18). If z does not belong to a circle, then there is a unique infinite chain
of circles and points such that zn → z as N → ∞, and then (9.19) holds with
N = ∞. Note that Gz is a piecewise linear function on circles.

We can use the Green’s function to “invert” the Laplacian as follows. Since the
Laplacian is neither one-to-one nor onto, we impose the condition

(9.20)

∫
J
f(y)dμ(y) = 0

on the right side of

(9.21) −Δμu = f

to assure existence, and we assume

(9.22) u(z0) = 0

to determine a unique solution. The solution is then given by integration against
Gz,

(9.23) u(x) =

∫
J
Gy(x)f(y)dμ(y).

Indeed,

(9.23)

−Δμu(x) =
∫
J (δy(x)− δz0(x))f(y)dμ(y)

= f(x)− (
∫
J f(y)dμ(y))δz0(x)

= f(x)

by (9.18) and (9.20), and u(z0) = 0 by (9.18).
We can also solve

(9.21′) −Δμ′u = f

and (9.22) under the assumption

(9.20′)

∫
J
f(y)dμ′(y)

by

(9.23′) u(x) =

∫
J
Gy(x)f(y)dμ

′(y)

for any finite Borel measure on J that assigns positive measure to open sets.
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