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SMASH PRODUCTS AND DIFFERENTIAL IDENTITIES

CHEN-LIAN CHUANG AND YUAN-TSUNG TSAI

To Pjek-Hwee Lee on his retirement

Abstract. Let U be the universal enveloping algebra of a Lie algebra and R
a U-module algebra, where U is considered as a Hopf algebra canonically. We
determine the centralizer of R in R#U with its associated graded algebra. We
then apply this to the Ore extension R[X;φ], where φ : X → Der(R). With the

help of PBW-bases, the following is proved for a prime ring R: Let Q be the
symmetric Martindale quotient ring of R. For fi, gi ∈ Q[X;φ],

∑
i firgi = 0

for all r ∈ R iff
∑

i fi ⊗ gi = 0, where ⊗ is over the centralizer of R in Q[X;φ].
Finally, we deduce from this Kharchenko’s theorem on differential identities.

1. Introduction

By a derivation of an associative ring R, not necessarily with 1, we mean a map
δ : R → R satisfying

δ(x+ y) = δ(x) + δ(y), δ(xy) = δ(x)y + xδ(y) for x, y ∈ R.

Given a ∈ R, define the map ad(a) : R → R by r ∈ R �→ ar − ra. We check
easily that ad(a) is a derivation of R, called the inner derivation defined by a ∈
R. Let Der(R) denote the set of derivations of R and Der0(R) the set of inner

derivations of R. Clearly, Der(R) forms a Lie ring with respect to [δ, d]
def.
= δd− dδ

for δ, d ∈ Der(R). Also clearly, Der0(R) forms a Lie ideal of Der(R) in the sense
that [Der(R),Der0(R)] ⊆ Der0(R).

Our primary aim is to investigate differential identities of a prime ring R in
terms of Ore extensions (to be defined in §3), as initiated in Amitsur [1] for a
single derivation and extended in [5] to a set of derivations. For this purpose, we
have to compute the centralizer of R in the Ore extension. This was done for
Ore extensions with one indeterminate in [1] for simple rings and was extended
to prime rings in [9]. The crucial computation of [1] was interpreted in terms of
Hasse-Schmidt higher derivations. For Ore extensions with many indeterminates,
the computation of the centralizer of R was left open in [5]. Higher derivations
don’t help much here because of the lack of the division algorithm. Surprisingly, it
turns out that this can be done much easier in the more general context of smash
products (to be explained in §2) with the associated graded algebras. We apply this
to Ore extensions in §3 and then deduce in §4 an interpretation of Kharchenko’s
theory of differential identities in the context of Ore extensions. It seems very
interesting whether results of §4 can be extended to the context of smash products

Received by the editors May 4, 2010 and, in revised form, August 30, 2010.
2010 Mathematics Subject Classification. Primary 16S40, 16S32, 16W25, 16S36, 16S30.
Key words and phrases. Derivations, universal enveloping algebras, centralizers, smash prod-

ucts, Ore extensions, differential identities.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

4155



4156 CHEN-LIAN CHUANG AND YUAN-TSUNG TSAI

considered in §2. Furthermore, can all these be generalized to q-skew derivations
or skew derivations ([4, 8])?

2. Smash products

Throughout here, k is a field. An associative (or Lie, Hopf) algebra over k will be
called an associative (or Lie, Hopf resp.) k-algebra. By a Lie ring or a Lie algebra
g, we always mean a restricted p Lie ring or algebra if char k = p ≥ 2.

Let g be a Lie k-algebra. It is well known that the universal enveloping algebra
of g, denoted by U, forms a pointed irreducible cocommutative Hopf algebra with
respect to the comultiplication Δ(a) = a ⊗ 1 + 1 ⊗ a, the counit ε(a) = 0 and the

antipode S(a)
def.
= −a for a ∈ g. Assume that R is an associative k-algebra. Let

Derk(R) be the set of k-linear derivations of R and Endk(R) the set of k-linear maps
of R. So Derk(R) forms a Lie k-algebra and Endk(R) forms an associative k-algebra.
Let φ : g → Derk(R) be a Lie k-algebra homomorphism. By the universal mapping
property, φ extends uniquely to a k-algebra homomorphism U → Endk(R), also
denoted by φ. With respect to φ thus extended, the k-algebra R is a U-module
algebra and we can form the smash product R#U. This is the k-space R ⊗k U,
where we write a ⊗ h as a#h for a ∈ R and h ∈ U, endowed with multiplication
defined by

(a#h)(b#g) = ab#hg + aφ(h)(b)#g for a, b ∈ R and h, g ∈ U.

We refer the reader to [10] and [13] for the details. Our aim here is to describe the
centralizer of R in R⊗k U. We recall the following:

Definition 1. Let R be a k-algebra with 1 and RM be a left R-module. We call a
finite sum

∑
i aimi, where ai ∈ R and mi ∈ M , a left R-linear combination of mi.

By a left R-basis of RM , we mean a subset B of M such that any m ∈ M can be
uniquely written as a left R-linear combination of elements in B. A right R-basis
of a right R-module is defined analogously. By an R-basis of an (R,R)-bimodule

RMR, we mean a subset B of M which is both a left R-basis of RM and a right
R-basis of MR.

The well-known Poincaré-Birkhoff-Witt Theorem asserts that regular words in
a linearly ordered k-basis of g form a k-basis of its universal enveloping k-algebra
U and hence form an R-basis of R#U. But our main concern is the centralizer of
R in R#U. Let C be the center of R. Clearly, C centralizes R. So the dependence
of elements of g over C, not merely over the subfield k of C, has to be considered.
We recall the notion of regular words in this general context as follows.

Definition 2. Given a set B, elements of the free monoid generated by B are called
B-words. The identity of the free monoid generated by B, denoted by 1, is called
the empty B-word. Given a B-word, write

W = b1b2 · · · bn,

where bi ∈ B and where we postulate W = 1 for convenience if n = 0. We call
n the B-length of W and write lhB(W ) = n. Assume further that B is linearly
ordered by <. By a regular B-word, we mean a B-word in the form

bn1
1 bn2

2 · · · · · bns
s ,
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where the bi ∈ B satisfy b1 < b2 < · · · < bs and, in the case of char k = p ≥ 2,
where 0 < ni < p for each i. We order regular B-words first by length and then
lexicographically for B-words of the same length.

We shall apply the above notions to algebras. To be precise, we state the follow-
ing.

Definition 3. Let A be an associative k-algebra with 1 and B a subset of A. By
a B-product, we mean an expression in A of the form

b1 · b2 · b3 · · · bn,

where bi ∈ B and where · denotes the multiplication of A. For simplicity of termi-
nology and as an abuse of language, whenever there is no confusion, the B-product

above will be identified with the B-word W
def.
= b1b2 · · · bn in the free monoid gen-

erated by B (as a set of symbols). So the above B-product is regular if so is W
and so on.

We stress here that the above notions apply not to elements of A but to ex-
pressions of elements of A as products of elements of B. An element of A may
be expressed as many B-products with different associated B-words of different
B-lengths and we have to know which expression is meant. Regular words occur
naturally in the following.

Lemma 1. Let R be a k-algebra with 1 and R[Y ] the k-algebra generated by R and
a set Y of commuting indeterminates subjected to yr = ry and yy′ = y′y for r ∈ R

and y, y′ ∈ Y . Set Rp[Y ]
def.
= R[Y ]/I, where I is the ideal of R[Y ] defined by

I
def.
=

{
0 if char k = 0,
the ideal generated by yp for y ∈ Y if char k = p > 0.

For any linear order < of Y , regular Y -words form an R-basis of the polynomial
ring Rp[Y ]. More specifically, for each n ≥ 0, regular Y -words of Y -length n form
an R-basis of the R-module of polynomials of degree n in Rp[Y ].

Proof. This is obvious by the commutativity yr = ry and yy′ = y′y for r ∈ R and
y, y′ ∈ Y . �

Theorem 2. Assume that R is a ring with the center C being a field. Let k be a
subfield of C and g a Lie k-algebra with the universal enveloping algebra U. Assume
that R is a U-module k-algebra. Let B be a C-basis of Cg as a left C-subspace of

the smash product R#U. For each h ∈ B, set h′ def.
= h + ah, where ah ∈ R is

arbitrarily chosen. Define B′ def.
= {h′ : h ∈ B} and let < be an arbitrary linear

order of B′. Then the set of regular B′-words forms an R-basis of R#U.

Proof. For n ≥ 0, let Vn be the set of f ∈ R#U which can be written in a finite
sum f =

∑
i aiWi, where 0 �= ai ∈ R and where Wi is a g-word of length ≤ n for

each i. Clearly, VnVm ⊆ Vn+m and

V0 ⊆ V1 ⊆ V2 ⊆ · · · .

So the associative k-algebra R#U is filtered. Set V−1
def.
= 0 for convenience. Define

V n
def.
= Vn/Vn−1 for n ≥ 0. For ā ∈ V n and b̄ ∈ V m, where a ∈ Vn and b ∈ Vm,
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define āb̄
def.
= ab ∈ V n+m. This is well-defined because of VsVt ⊆ Vs+t. With this,

we form the graded k-algebra

gr(R#U)
def.
=

⊕
i≥0

V i.

We say that f ∈ R#U has g-degree n and write degg(f) = n if f ∈ Vn − Vn−1.
Given f ∈ R#U with degg(f) = n, define

f̄
def.
= f + Vn−1 ∈ V n ⊆ gr(R#U).

Given finitely many f, fi ∈ R#U, if f = f1 + f2 + · · · and if degg(f) = degg(f1) =
degg(f2) = · · · , then clearly

(�) f̄ = f̄1 + f̄2 + · · · .

For S ⊆ R#U, set S
def.
= {f̄ ∈ gr(R#U) : f ∈ S}. Let h ∈ g �→ δh ∈ Derk(R) be the

Lie homomorphism g → Derk(R). For any r ∈ R and h ∈ g, hr − rh = δh(r) ∈ R
and hence h̄r̄ = r̄h̄ in gr(R#U). Since δ(C) ⊆ C for δ ∈ Der(R), Cg forms a
Lie ring. So for f1, f2 ∈ Cg, f1f2 − f2f1 ∈ Cg ⊆ V1 and hence f̄1f̄2 = f̄2f̄1 in
gr(R#U). Thus Cg is a commuting set in gr(R#U). Clearly, gr(R#U) is the
k-algebra generated by R and the commuting set Cg.

Set p
def.
= charR ≥ 0. Given a C-basis Y of Cg, let Rp[Y ] be as defined in Lemma

1. We claim that there is a k-algebra homomorphism θ : Rp[Y ] → gr(R#U) such

that θ(r) = r for r ∈ R and such that θ(y) = y ∈ V 1 for y ∈ Y . This is clear if

charR = p = 0, for Rp[Y ]
def.
= R[Y ] is the freest k-algebra generated by R and the

commuting set Y . Assume charR = p ≥ 2. Since g is a restricted p-Lie algebra by
our convention, there is a unary p-operation h �→ h[p] for h ∈ g such that in the
universal enveloping algebra U we have

h · h · h · · ·h︸ ︷︷ ︸
p times

= hp = h[p].

Since h[p] ∈ V1, we have h̄
p = 0 for h ∈ g in the associated graded algebra gr(R#U).

Given 0 �= f ∈ Cg, write f = α1h1+α2h2+ · · · , where αi ∈ C and hi ∈ g. By (�),
f̄ = ᾱ1h̄1 + ᾱ2h̄2 + · · · and hence

f̄p = (ᾱ1h̄1 + ᾱ2h̄2 + · · · )p = ᾱp
1h̄

p
1 + ᾱp

2h̄
p
2 + · · · = 0.

Since Y ⊆ Cg, we see that yp = 0 for y ∈ Y in gr(R#U). By the definition in
Lemma 1, Rp[Y ] is the freest k-algebra generated by R and the commuting set Y
subjected to the condition yp = 0 for y ∈ Y . The claim is thus proved.

We show that θ above is the k-algebra isomorphism of Rp[Y ] and gr(R#U).
The map θ is surjective, since gr(R#U) is the k-algebra generated by R and the
commuting set Y . To show the injectivity of θ, pick arbitrarily a k-basis B of g with
a linear order <. By the Poincaré-Birkhoff-Witt Theorem, regular B-words form
a k-basis of U and hence form an R-basis of R#U, since R#U, as a left C-space,
is the same as the left C-space R ⊗k U; also B forms a C-basis of Cg. So regular
B-words of B-lengths ≤ n form an R-basis of Vn for each n ≥ 0. Particularly, B
forms a C-basis of Cg. The injectivity of Rp[B] → gr(R#U) follows. Given an

arbitrary C-basis Y of Cg, there exist αy
b , β

b
y ∈ C for b ∈ B and y ∈ Y such that

y =
∑
b∈B

αy
b b̄ and b̄ =

∑
y∈Y

βb
yy.
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Since both Y and B are C-bases of Cg, the two expressions above are inverse to
each other. The injectivity of Rp[Y ] → gr(R#U) follows from that of Rp[B] →
gr(R#U).

Let B be a given left C-basis of Cg. Clearly, B forms a C-basis of Cg and hence

gr(R#U) = Rp[B]. Let B′ def.
= {h′ : h ∈ B}, where, for each h ∈ B, h′ def.

= h + ah
for some ah ∈ R. Given a linear order < of B′, we denote the corresponding linear
order of B also by <. By Lemma 1, regular B-words of length n form an R-basis
for V n. For any h1, . . . , hn ∈ B, where n ≥ 1, we have h1 · · ·hn ≡ h′

1 · · ·h′
n modulo

Vn−1. So regular B′-words of length n also form an R-basis for V n. With this, we
see inductively that regular B′-words of length ≤ n form a left R-basis of nonzero
Vn. From this, our assertion follows. �

Theorem 2 provides very good bases, which deserve a special definition below
because of frequent uses in the sequel.

Definition 4. Let R, C, k and g be as in Theorem 2. Let φ : h ∈ Cg �→ δh ∈
Derk(R) be the left C-linear map extending the Lie homomorphism g → Derk(R).

(So φ(Cg) = Cφ(g).) Set g0
def.
= {h ∈ Cg : δh ∈ Der0(R)}. Let B be a left C-basis

of Cg such that B0
def.
= B ∩ g0 forms a left C-basis of g0. For each h ∈ B0, pick

ah ∈ R arbitrarily such that δh = ad(ah). Define B′
0

def.
= {h − ah : h ∈ B0} and

B′ def.
= B′

0 ∪ (B −B0). Let < be a linear order of B′ such that

(∗) h < g for h ∈ B′
0 and g ∈ B −B0.

We call B′ so ordered a regular Lie basis of the smash product R#U.

With regular Lie bases, we are able to compute the centralizer of R in R#U. For
latter applications, we have to characterize subsets T of R such that the centralizer
of T in R#U is equal to the centralizer of R in R#U. This seems interesting in
itself.

Theorem 3. Let R, C, k and g be as in Theorem 2. Set S
def.
= R#U. For T ⊆ R,

set CS(T )
def.
= the centralizer of T in S.

(1) For T ⊆ R, CS(T ) = CS(R) iff for any δ ∈ Cφ(g) + Der0(R), δ(T ) = 0
implies δ(R) = 0.

(2) Let B′ be a regular Lie basis of S and retain the notation of Definition 4.
The set of regular B′

0-words forms a C-basis of the free C-module CS(R). For any
C-basis V of R, the set

B
def.
= {vW : v ∈ V and W is a regular word in B −B0}

forms a CS(R)-basis of the free CS(R)-module R#U.
(3) Any element of S⊗CS(R)S can be uniquely expressed in the form

∑
i fi ⊗ gi,

where fi ∈ R#U and where the gi ∈ B are distinct.

Proof. Given h ∈ Cg and a ∈ R, δh + ad(a) vanishes on a subset T of R iff
h + a ∈ CS(T ). So if CS(T ) = CS(R), then δ(T ) = 0 implies δ(R) = 0 for
δ ∈ Cφ(g) + Der0(R). On the other hand, suppose that δ(T ) = 0 implies δ(R) = 0
for any δ ∈ Cφ(g)+Der0(R). Clearly, C and B′

0 are contained in CS(R) and hence
in CS(T ). By Theorem 2, regular B′-words form a left R-basis of R#U. Any
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regular B′-word is of the form ξW , where ξ is a regular B′
0-word and W is a regular

(B −B0)-word. So any f ∈ R#U can be uniquely expressed in the form

f =
∑
i

ξifi,

where ξi ranges over all distinct regular B′
0-words and where fi ∈ R#U are left

R-linear combinations of regular (B − B0)-words. Suppose that f ∈ CS(T ). Since
all ξi centralize R, we have for any r ∈ R,

0 = fr − rf =
∑
i

ξi(fir − rfi).

Since subwords of regular (B − B0)-words are also regular (B − B0)-words, each
fir − rfi is also a left R-linear combination of regular (B − B0)-words. So each
ξi(fir − rfi) is a left R-linear combination of regular B′-words starting with ξi.
Since the ξi are distinct for distinct i, so are the B′-words involved in ξi(fir− rfi).
It follows that fir − rfi = 0 for all i and all r ∈ T . That is, fi ∈ CS(T ) for
all i. All fi’s are left R-linear combinations of regular (B − B0)-words. It thus
suffices to show that for any left R-linear combination g of regular (B−B0)-words,
if g ∈ CS(T ), then g ∈ C. So consider such a g and write it as a left R-linear
combination of distinct regular (B −B0)-words Wi:

g = a1W1 + a2W2 + · · · , where ai ∈ R.

If Wi has the maximal length among all W1,W2, . . ., then for any r ∈ T ,

0 = gr − rg = (air − rai)Wi + · · · ,
where the dots denote a left R-linear combination of regular (B−B0)-words distinct
from Wi. So air − rai = 0 for any r ∈ T . That is, the inner derivation ad(ai)
vanishes on T and hence on R by our assumption of T . That is, ai ∈ C. Let us
assume that W1 is the <-maximum among all Wi. If W1 �= ∅, then write

W1 = bn1
1 bn2

2 · · · bns
s ,

where bi ∈ B − B0 satisfy b1 < b2 < · · · < bs and where 0 < ni < p for each i in
the case of char k = p ≥ 2. Suppose that

Wj = bn1−1
1 bn2

2 · · · bns
s for some j.

Also, assume that W2, . . . ,Wm enumerate all those Wi of maximal length such
that Wi = diWj = dib

n1−1
1 bn2

2 · · · bns
s for some di ∈ B − B0 − {b1}. Recall that

φ : h ∈ Cg �→ δh ∈ Derk(R) denotes the left C-linear map extending the Lie
k-algebra homomorphism g → Derk(R). The left coefficient of bn1−1

1 bn2
2 · · · bns

s in
gr − rg is then given by

n1a1δb1(r) +
m∑
i=2

aiδdi
(r) + ajr − raj .

We have seen that ai ∈ C for i = 0, 1, . . . ,m. So the above expression defines a
derivation in Cφ(g)+Der0(R). Since g centralizes T , the above expression vanishes
for r ∈ T and hence for r ∈ R by our assumption of T . So we have

n1a1δb1 +

m∑
i=2

aiδdi
+ ad(aj) = 0.
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So n1a1b1+
∑m

i=2 aidi falls in Cg0 and hence can be expressed as a C-linear combi-
nation of B′

0. But b1, d2, . . . , dm ∈ B−B0, implying n1a1 = 0. Also, n1 is invertible
in R. So a1 = 0, a contradiction. (1) is thus proved. By (∗), any regular B′-word
can be uniquely written as a product ξW , where ξ is a regular B′

0-word and W is
a regular (B − B0)-word. By Theorem 2, these words ξW form a left R-basis of
R#U. Since V is a C-basis of R, the set vξW , where v ∈ V , ξ is a regular B′

0-word
and W is a regular (B − B0)-word, forms a C-basis of R#U. But vξW = ξvW ,
since ξ centralizes R. So (2) follows. As right CS(R)-modules, S =

⊕
i CS(R)gi,

where gi enumerate B. So

S ⊗
CS(R)

S = S ⊗
CS(R)

( ⊕
i

CS(R)gi

)
=

⊕
i

S ⊗
CS(R)

gi.

So (3) follows. �

3. Ore extensions

Given a set X of noncommuting indeterminates, finite or infinite, and a map

φ : X → Der(R), write δx
def.
= φ(x) for brevity. Let R[X;φ] denote the ring of

polynomials in indeterminates x ∈ X and with coefficients in R subjected to the
following commutation rule for a ∈ R and x ∈ X:

xa = ax+ δx(a), where δx = φ(x) ∈ Der(R).

We call R[X;φ] the Ore extension of R by φ. (See [3, 15, 14].) We stress here that
the indeterminates x ∈ X do not commute with each other and that the map φ
may not be injective. So distinct x ∈ X can be associated with the same derivation.

In traditional notation, we enumerate X as a sequence xi, i = 0, 1, . . ., and let

D be the corresponding sequence δi
def.
= φ(xi) = δxi

∈ Der(R), i = 0, 1, . . .. In this
way, the map φ is explicitly encoded in the two corresponding sequences X and
D. We can thus denote R[X;φ] by R[X;D]. Ore extensions are also called skew
polynomial rings, which has become one of the most basic and useful constructions
in ring theory. This topic has been extensively studied in various directions for a
few decades.

Here are some interesting special instances of R[X;D]: If X is a singleton, say

X = {x}, then R[X;φ] is commonly written as R[x; δ], where δ
def.
= φ(x) ∈ Der(R).

This is the most extensively investigated Ore extension. If δ happens to be the zero
derivation, then R[x; δ], usually written as R[x] and called the polynomial ring in x
over R, is merely the ring R adjoined by the indeterminate x which commutes with
R. More generally, if φ(x) = 0 for x ∈ X, then the Ore extension R[X;φ], usually
denoted by R〈X〉 and called the free algebra generated by X over R, is simply the
ring R adjoined by the indeterminates x ∈ X which all commute with R but which
do not commute with each other.

Let R be an associative k-algebra and φ : X → Derk(R). Let gX be the Lie
k-algebra generated by X in R[X;φ]. (So gX is a restricted p-Lie k-algebra if
charR = p ≥ 2 by our convention.) Clearly, gX is the free Lie k-algebra generated
by X. By [12] or [11], the universal enveloping algebra of gX is k〈X〉, the free
associative k-algebra generated by X. This is also contained in R[X;φ]. The map
φ : X → Derk(R) extends to a unique Lie k-algebra homomorphism gX → Derk(R)
by the freedom of gX on the generator setX and then to a k-algebra homomorphism
k〈X〉 → Endk(R) by the freedom of k〈X〉. With the map thus extended, which
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we also denoted by φ, R is a k〈X〉-module algebra. It was pointed out to us by
the referee of [14] that the Ore extension R[X;φ] can be interpreted as a smash
product as the following.

Lemma 4. In the context above, the Ore extension R[X;φ] is canonically isomor-
phic with the smash product R#k〈X〉 via the map a �→ a#1 for a ∈ R and x �→ 1#x
for x ∈ X.

Proof. For a ∈ R and x ∈ X, write δx
def.
= φ(x) and we have

(1#x)(a#1) = a#x+ φ(x)(a)#1 = a#x+ δx(a)#1.

So a �→ a#1 for a ∈ R and x �→ 1#x for x ∈ X induces a surjective k-algebra
homomorphism R[X;φ] → R#k〈X〉. Suppose that f ∈ R[X;φ] is in the kernel of
the above k-algebra homomorphism. Write f =

∑
i aiwi, where ai ∈ R and where

wi are distinct words in X. Then 0 =
∑

i ai#wi =
∑

i ai ⊗k wi. The distinct
words wi, as elements of k〈X〉, are k-independent. So

∑
i ai#wi = 0, which is the

same as
∑

i ai ⊗k wi = 0, implies each ai = 0, that is, f =
∑

i aiwi = 0. So the
k-algebra homomorphism R[X;φ] → R#k〈X〉 defined above is actually a k-algebra
isomorphism, as expected. �

Let R be a ring with the center C, which forms a field. Clearly, δ(C) ⊆ C for
any δ ∈ Der(R). Given a map φ : X → Der(R), where X is a set of indeterminates,

write δx
def.
= φ(x) for x ∈ X and define

C(φ) def.
= {α ∈ C : δx(α) = 0 for any x ∈ X}.

Clearly, C(φ) is a subfield of C. Let k be any subfield of C(φ). The simplest choice

of k is the prime subfield of C. Then φ(x)
def.
= δx ∈ Derk(R) for x ∈ X. By Lemma

4, R[X;φ] is canonically isomorphic to the smash product R#k〈X〉. With this,
we are able to apply Theorems 2 and 3 to the Ore extension R[X;φ]. For the
convenience of later applications, we recall Definition 4 and Theorems 2 and 3 in
the context of Ore extensions as follows.

Definition 5. Let R be a ring with the center C being a field. In the Ore extension
R[X;φ], let g be the free Lie algebra generated by X over the prime field of C
and let h ∈ Cg �→ δh ∈ Der(R) be the left C-linear Lie map extending the map
φ : X → Der(R). Let g0 be the C-space of h ∈ g such that δh ∈ Der0(R). Let B

be a C-basis of Cg such that B0
def.
= B ∩ g0 forms a C-basis of g0. For h ∈ B0,

choose ah ∈ R such that δh = ad(ah). Define B′
0

def.
= {h − ah : h ∈ B0} and

B′ def.
= B′

0 ∪ (B−B0). Let < be a linear order of B′ such that h < g for h ∈ B′
0 and

g ∈ B−B0. We call B′ so ordered a regular Lie basis of the Ore extension R[X;φ].

Theorem 5. Let R be a ring with the center C being a field. Set S
def.
= R[X;φ].

Let B′ be a regular Lie basis of S and retain the notation of Definition 5. We have
the following:

(1) Regular B′-words form an R-basis of R[X;φ].
(2) For T ⊆ R, CS(T ) = CS(R) iff for any δ ∈ Cφ(g) + Der0(R), δ(T ) = 0

implies δ(R) = 0.
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(3) The set of regular B′
0-words forms a C-basis of the free C-module CS(R).

For any C-basis V of R, the set

B
def.
= {vW : v ∈ V and W is a regular word in B −B0}

forms a CS(R)-basis of the free CS(R)-module S.
(4) Any element of S⊗CS(R)S can be uniquely expressed in the form

∑
i fi ⊗ gi,

where fi ∈ S and where gi ∈ B are distinct.

Proof. (1) follows by Theorem 2 and the rest by Theorem 3. �

It is interesting to see the special instance of Theorem 5 for X = {x}. This has
already generalized all the known results in the literature, in which R has to be
simple [1] or prime [9]. Ours is true for any ring R with the center C being a field.

Corollary 6. Consider the Ore extension S
def.
= R[x; δ], where δ ∈ Der(R) and

where R is a ring with the center C being a field. Set C(δ) def.
= {α ∈ C : δ(α) = 0}.

Let ZS denote the center of S.

(1) charR = 0: If δ is inner, say δ = ad(a), where a ∈ R, then CS(R) = ZS =

C[ξ], where ξ
def.
= x− a. Otherwise, CS(R) = C and ZS = C(δ).

(2) charR = p ≥ 2: Assume that there exist αi ∈ C(δ) and a ∈ R such that

(†) δp
s

+ α1δ
ps−1

+ · · ·+ αsδ = ad(a).

Let s ≥ 0 above be the minimal such integer. Then CS(R) = C[ξ], where ξ
def.
=

xps

+ α1x
ps−1

+ · · ·+ αsx− a. If δ(a) ∈ δ(C), say δ(a) = δ(α), where α ∈ C, then
ZS = C(δ)[ξ + α]. If δ(a) /∈ δ(C), then ZS = C(δ)[ξp]. If δ does not satisfy any
identities of the form (†), then CS(R) = C and ZS = C(δ).

Proof. We retain the notation of Theorem 5. Let k be the prime field of C. For
the case charR = 0, the Lie ring g generated by kx is kx itself. If δ = ad(a) for

some a ∈ R, then g0 = g = Cx and CS(R) = C[ξ], where ξ
def.
= x− a, follows from

Theorem 5 by letting B′
0

def.
= {ξ}. Since CS(R) ⊇ ZS ⊇ C[ξ], we have C[ξ] = ZS . If

δ is outer, then g0 = 0 and CS(R) = C follows from Theorem 5 by letting B′
0

def.
= ∅.

For the case charR = p ≥ 2, the Lie ring g generated by kx is
⊕

0≤j kx
pj

, and

Cg =
⊕

0≤j Cxpj

, the left C-space spanned by {xpj

: j ≥ 0}. Suppose that δ

satisfies (†) with s being the minimum. Set y
def.
= xps

+α1x
ps−1

+ · · ·+αsx. Clearly,

g =
⊕
0≤j

Cxpj

=
⊕

0≤j<s

Cxpj ⊕
⊕
0≤t

Cyp
t

.

By the minimality of s, g0 =
⊕

0≤t Cyp
t

. So g0 has the left C-basis B0
def.
= {ypt

:

t ≥ 0}. Clearly, δypt = ad(ap
t

). Set B′
0

def.
= {ypt − ap

t

: t ≥ 0} and ξ
def.
= y − a.

Since ya = ay, we have yp
t − ap

t

= ξp
t

. So B′
0 = {ξpt

: t ≥ 0}. Order B′
0

linearly by setting ξ < ξp < ξp
2

< · · · . Regular B′
0 words consist of ξn, n ≥ 0. So

CS(R) = C[ξ] follows by Theorem 5. Since S is generated by R and x, we have
ZS = {f ∈ CS(R) : [f, x] = 0}. For α ∈ C, δα = αδ+ δ(α). With this, we multiply
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(†) by δ from the left-hand sides, from the right-hand sides, and then take their
difference. This yields

δ(α1)δ
ps−1

+ · · ·+ δ(αs)δ = ad(δ(a)).

This implies δ(αi) = 0 and δ(a) ∈ C by the minimality of s. With this,

[ξ, x] = [y − a, x] = δ(α1)x
ps−1

+ · · ·+ δ(αs)x− δ(a) = −δ(a).

Assume δ(a) ∈ δ(C), say δ(a) = δ(α), where α ∈ C. Then [ξ + α, x] = −δ(a) +
δ(α) = 0, implying ξ + α ∈ ZS . Since CS(R) = C[ξ] = C[ξ + α], ZS = C(δ)[ξ + α].
Assume δ(a) /∈ δ(C). Since δ(a) ∈ C, we have [ξp, x] = pξp−1δ(a) = 0. Any
f ∈ CS(R) can be written uniquely in the form

f = a0(ξ) + a1(ξ)ξ
p + a2(ξ)ξ

p2

+ · · · ,
where each ai(ξ) ∈ C[ξ] has ξ-degree < p. So f ∈ ZS iff 0 = [f, x] = [a0(ξ), x] +

[a1(ξ), x]ξ
p+[a2(ξ), x]ξ

p2

+· · · , iff [ai(ξ), x] = 0 for each i. Write ai(ξ) =
∑t

j=0 βjξ
j ,

where 0 ≤ j ≤ t < p, βj ∈ C and βt �= 0. We have

[ai(ξ), x] =
t∑

j=0

[βj , x]ξ
j +

t∑
j=1

βj [ξ
j , x]

=−
t∑

j=0

δ(βj)ξ
j −

t∑
j=1

jδ(a)βjξ
j−1

=−
t−1∑
j=0

(δ(βj) + (j + 1)δ(a)βj+1)ξ
j − (δ(βt))ξ

t.

Suppose [ai(ξ), x] = 0. Then δ(βt) = 0 and δ(βt−1) + tδ(a)βt = 0. If t > 0, then

δ(a) = −δ(βt−1)
tβt

= −δ(βt−1

tβt
) ∈ δ(C), contradicting our assumption. So t = 0 and

ai(ξ) = β0 ∈ C(δ). We have thus shown that f ∈ ZS implies f ∈ C(δ)[ξp]. Clearly,
f ∈ C(δ)[ξp] implies f ∈ ZS . So ZS = C(δ)[ξp] follows. �

4. Differential identities

A differential identity of R is an equality∑
i

∑
j

aijwi(r)bij = 0 ∀r ∈ R,

where aij , bij ∈ R and where wi are compositions of derivations of R. In the Ore
extension R[X;φ], write φ(x) = δx for x ∈ X. For r ∈ R,

δx(r) = [x, r]
def.
= xr − rx,

δyδx(r) = [y, [x, r]],

· · · · · ·
In this way, a differential identity involving derivations in φ(X) can be put in the
form ∑

i

firgi = 0 ∀r ∈ R,

where fi, gi ∈ R[X;φ]. We will prove the following.
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Theorem 7. Let R be a prime ring and Q its symmetric Martindale quotient ring.

Set S
def.
= Q[X;φ] and

CS(R)
def.
= {f ∈ S : fr = rf for r ∈ R}.

Given fi, gi ∈ S,
∑

i firgi = 0 for all r ∈ R iff
∑

i fi ⊗
CS(R)

gi = 0 .

We recall some notation from [6] and [7]. Let Qop denote the opposite ring of
Q and let Z be the ring of integers. The tensor product Q ⊗Z Qop consists of
elements in the form

∑
i ri ⊗ r′i, where ri ∈ Q and r′i ∈ Qop. For f ∈ S and

β =
∑

i ri ⊗ r′i ∈ Q⊗Z Qop, we define

f · β def.
=

∑
i

r′ifri.

Let L denote the subring of Q⊗Z Q
op generated by the elements of the form r⊗ r′

for all r, r′ ∈ R ∪ {1}. Thus we can regard S as a right L-module. For a subset
Y ⊆ S, we define

Y ⊥ def.
= {β ∈ L | f · β = 0 for all f ∈ Y }.

Note that Y ⊥ is an (R,R)-submodule of L. On the other hand, for U ⊆ L, we
define

U⊥ def.
= {f ∈ S | f · β = 0 for all β ∈ U}.

We need the following.

Lemma 8 (Lemma 4 [5]). Let C denote the extended centroid of R. Given finitely
many a1, . . . , an ∈ Q, we have

(Ca1 + · · ·+ Can)
⊥⊥ = a1CS(R) + · · ·+ anCS(R).

We are ready for

Proof of Theorem 7. The implication ⇐ is obvious. For the implication ⇒, we
apply Theorem 5. It is well known that any derivation of R can be uniquely
extended to Q. So any derivation of Q vanishing on R must also vanish on Q. So
CS(R) = CS(Q) by Theorem 5. Let C denote the extended centroid of R, which
is defined to be the center of Q. Fix a C-basis V of Q. By Theorem 5, the set of
regular B′-words forms a right Q-basis of S, the set of regular B′

0-words forms a
C-basis of CS(R) and the set

B
def.
= {vU : v ∈ V and U is a regular word in B −B0}

forms a basis of the free CS(R)-module S. Let g1, g2, . . . enumerate elements of B.
By (4) of Theorem 5, we have for any fi ∈ S,∑

i

fi ⊗
CS(R)

gi = 0 ⇔ all fi = 0.

Assume on the contrary that there exist 0 �= fi ∈ Q[X;φ], and gi ∈ B such that

(‡)
∑
i

firgi = 0 for all r ∈ R.

Fix arbitrarily a linear order � of X-words such that

short word ≺ long word.
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The �-leading word of 0 �= f ∈ S is the �-maximal word occurring nontrivially
in f . By the �-leading word of (‡), we mean the �-maximum of �-leading words
of nonzero fi’s. We may further choose (‡) so that that its �-leading word W is
minimal possible. For each i, write

fi = aiW + · · · .

For β ∈
⋂

i a
⊥
i , each fi ·β has �-leading word < W . We easily see

∑
i(fi ·β)rgi = 0

for all r ∈ R. By the �-minimality of (‡), we have fi · β = 0. So β ∈
⋂

i a
⊥
i implies

fi · β = 0. By Lemma 8, fi ∈
∑

j ajCS(R). Let ξj enumerate regular B′
0-words.

We may thus write

fi =
∑
j

bijξj , where bij ∈ Q.

With this, rewrite (‡) as

0 =
∑
i

∑
j

bijξjrgi =
∑
i

∑
j

bijrξjgi for all r ∈ R.

Let v1, v2, . . . enumerate V and U1, U2, . . . enumerate regular B′-words. Each gi ∈ B

can be written uniquely as gi = vsUt. We re-index the corresponding bij as bstj if
gi = vsUt. So

0 =
∑
s,t

∑
j

bstjrξjvsUt =
∑
s,t,j

bstjrvsξjUt for all r ∈ R.

Distinct ordered pairs (j, t) correspond to distinct regular B′-words ξjUt and these
regular B′-words form a right R-basis of S. So for a fixed ordered pair (j, t),

0 =
∑
s

bstjrvs.

But V = {v1, v2, . . .} forms a C-basis of Q. By the well-known Martindale’s lemma,
bstj = 0. This is true for all s, t, j. So all bij = 0 and hence fi =

∑
j bijξj = 0 for

all i, contradicting the assumption. �

It is interesting to deduce Kharchenko’s Theorem from the above.

Theorem 9 (Lemma 2 [6]). Let R be a prime ring, Q its symmetric Martindale
quotient ring and C its extended centroid. Suppose that δi ∈ Der(Q), i = 1, 2, . . .,
are mutually outer in the sense that given any finite sum

∑
i αiδi ∈ Der0(Q), where

αi ∈ C, then all αi = 0 follows. Let < linearly order these δi. Let wj enumerate
regular words in these δi. Given aij , bij ∈ Q, if∑

i,j≥0

aijwj(r)bij = 0 for all r ∈ R,

then
∑

i aij⊗
C
bij = 0 for each j.

Proof. Pick a set X = {x1, x2, . . .} of indeterminates with the cardinality equal

to that of these δi. Define φ : X → Der(Q) such that φ(xi)
def.
= δi. Extend φ to

X-words by setting

φ(xi1xi2 · · · )
def.
= φ(xi1)φ(xi2) · · · ,
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where xi1 , xi2 , . . . ∈ X. Conversely, given a product (or word) w of derivations in
Der(Q), let φ−1(w) be the X-word W such that φ(W ) = w. Let k be the prime
subfield of C and g the free Lie algebra generated by X over k. Define

g0 = {h ∈ Cg : φ(h) ∈ Der0(Q)}.
Fix a C-basis B0 of g0. The set X ∪B0 is C-independent by the mutual outerness

of δi
def.
= φ(xi) and hence can be extended to a left C-basis B of Cg. For h ∈ B0,

pick ah ∈ Q such that φ(h) = ad(ah). Set B′
0

def.
= {h − ah}. Order X by setting

xi < xj if δi < δj . Extend this order of X to B′ such that h < g for h ∈ B′
0 and

g ∈ B − B0. Given a derivation word w = · · · δs2δs1 , where δsi ∈ Der(Q), write

w(r) = [· · · · · · [xs2 , [xs1 , r]] · · · ] =
∑
l

flrgl,

where fl, gl are subwords of the word φ−1(w) = · · ·xs2xs1 . So if w is a regular word
in derivations, then fl, gl are regular X-words (and hence regular (B −B0)-words,
since X ⊆ B −B0). Given aij , bij ∈ Q, suppose that∑

i,j

aijwj(r)bij = 0 for all r ∈ R.

In the way explained above, write this in the form
∑

l flrgl = 0, where fl, gl ∈ S
involve only regular X-subwords of φ−1(wj). By Theorem 7,

∑
l fl ⊗ gl = 0, where

⊗ is taken over CS(R). Since fl, gl ∈ S involve only regular X-subwords of φ−1(wj),∑
l fl ⊗ gl is a sum of terms of the form

aW ⊗ bW ′,

where a, b ∈ Q and where W,W ′ are regular X-subwords of some φ−1(wj). We may
assume that w0 has the maximal length n among all wi. In

∑
l fl ⊗ gl, the sum of

terms involving W0
def.
= φ−1(w0) is clearly∑

i

ai0W0 ⊗ bi0 + (−1)n
∑
i

ai0 ⊗ bi0W0.

By (4) of Theorem 5,
∑

i ai0 ⊗C bi0 = 0. On the other hand,
∑

i ai0 ⊗C bi0 = 0
implies

∑
i ai0w0(r)bi0 = 0 for r ∈ R. So we have∑

i,j>0

aijwj(r)bij = 0 for all r ∈ R.

Apply the same argument to this and continue in this manner. It follows that∑
i aij ⊗C bij = 0 for all j. �
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