Nondegeneracy of the eigenvalues of the Hodge Laplacian for generic metrics on 3-manifolds
HTML articles powered by AMS MathViewer
- by Alberto Enciso and Daniel Peralta-Salas PDF
- Trans. Amer. Math. Soc. 364 (2012), 4207-4224 Request permission
Abstract:
In this paper we analyze the eigenvalues and eigenfunctions of the Hodge Laplacian for generic metrics on a closed 3-manifold $M$. In particular, we show that the nonzero eigenvalues are simple and the zero set of the eigenforms of degree $1$ or $2$ consists of isolated points for a residual set of $C^r$ metrics on $M$, for any integer $r\geqslant 2$. The proof of this result hinges on a detailed study of the Beltrami (or rotational) operator on co-exact $1$-forms.References
- Jeffrey H. Albert, Generic properties of eigenfunctions of elliptic partial differential operators, Trans. Amer. Math. Soc. 238 (1978), 341–354. MR 471000, DOI 10.1090/S0002-9947-1978-0471000-3
- Colette Anné and Bruno Colbois, Spectre du laplacien agissant sur les $p$-formes différentielles et écrasement d’anses, Math. Ann. 303 (1995), no. 3, 545–573 (French). MR 1355003, DOI 10.1007/BF01461004
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- Shigetoshi Bando and Hajime Urakawa, Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds, Tohoku Math. J. (2) 35 (1983), no. 2, 155–172. MR 699924, DOI 10.2748/tmj/1178229047
- Christian Bär, Zero sets of solutions to semilinear elliptic systems of first order, Invent. Math. 138 (1999), no. 1, 183–202. MR 1714341, DOI 10.1007/s002220050346
- David D. Bleecker and Leslie C. Wilson, Splitting the spectrum of a Riemannian manifold, SIAM J. Math. Anal. 11 (1980), no. 5, 813–818. MR 586909, DOI 10.1137/0511072
- Sagun Chanillo and François Treves, On the lowest eigenvalue of the Hodge Laplacian, J. Differential Geom. 45 (1997), no. 2, 273–287. MR 1449973
- Mircea Craioveanu, Mircea Puta, and Themistocles M. Rassias, Old and new aspects in spectral geometry, Mathematics and its Applications, vol. 534, Kluwer Academic Publishers, Dordrecht, 2001. MR 1880186, DOI 10.1007/978-94-017-2475-3
- Mattias Dahl, Dirac eigenvalues for generic metrics on three-manifolds, Ann. Global Anal. Geom. 24 (2003), no. 1, 95–100. MR 1990087, DOI 10.1023/A:1024231524848
- John Etnyre and Robert Ghrist, Contact topology and hydrodynamics. III. Knotted orbits, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5781–5794. MR 1781279, DOI 10.1090/S0002-9947-00-02651-9
- John Etnyre and Robert Ghrist, Generic hydrodynamic instability of curl eigenfields, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 2, 377–390. MR 2173533, DOI 10.1137/04060651X
- Robert Hardt and Leon Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), no. 2, 505–522. MR 1010169
- Dmitry Jakobson and Nikolai Nadirashvili, Eigenfunctions with few critical points, J. Differential Geom. 53 (1999), no. 1, 177–182. MR 1776094
- Pierre Jammes, Construction de valeurs propres doubles du laplacien de Hodge-de Rham, J. Geom. Anal. 19 (2009), no. 3, 643–654 (French, with English summary). MR 2496570, DOI 10.1007/s12220-009-9079-6
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
- Jerry L. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), no. 5, 667–681. MR 948075, DOI 10.1002/cpa.3160410508
- John Lott, Collapsing and the differential form Laplacian: the case of a smooth limit space, Duke Math. J. 114 (2002), no. 2, 267–306. MR 1920190, DOI 10.1215/S0012-7094-02-11424-0
- Tatiana Mantuano, Discretization of Riemannian manifolds applied to the Hodge Laplacian, Amer. J. Math. 130 (2008), no. 6, 1477–1508. MR 2464025, DOI 10.1353/ajm.0.0025
- Richard S. Millman, Remarks on spectrum of the Laplace-Beltrami operator in the middle dimensions, Tensor (N.S.) 34 (1980), no. 1, 94–96. MR 570572
- Frank Quinn, Transversal approximation on Banach manifolds, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 213–222. MR 0264713
- K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), no. 4, 1059–1078. MR 464332, DOI 10.2307/2374041
- Shing Tung Yau (ed.), Seminar on Differential Geometry, Annals of Mathematics Studies, No. 102, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982. Papers presented at seminars held during the academic year 1979–1980. MR 645728
- Shing-Tung Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28. MR 1216573
Additional Information
- Alberto Enciso
- Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Email: aenciso@icmat.es
- Daniel Peralta-Salas
- Affiliation: Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
- Email: dperalta@icmat.es
- Received by editor(s): April 16, 2010
- Received by editor(s) in revised form: September 24, 2010
- Published electronically: March 21, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 4207-4224
- MSC (2010): Primary 58J50, 35B38
- DOI: https://doi.org/10.1090/S0002-9947-2012-05496-1
- MathSciNet review: 2912451