Two critical periods in the evolution of random planar graphs
HTML articles powered by AMS MathViewer
- by Mihyun Kang and Tomasz Łuczak PDF
- Trans. Amer. Math. Soc. 364 (2012), 4239-4265 Request permission
Abstract:
Let $P(n,M)$ be a graph chosen uniformly at random from the family of all labeled planar graphs with $n$ vertices and $M$ edges. In this paper we study the component structure of $P(n,M)$. Combining counting arguments with analytic techniques, we show that there are two critical periods in the evolution of $P(n,M)$. The first one, of width $\Theta (n^{2/3})$, is analogous to the phase transition observed in the standard random graph models and takes place for $M=n/2+O(n^{2/3})$, when the largest complex component is formed. Then, for $M=n+O(n^{3/5})$, when the complex components cover nearly all vertices, the second critical period of width $n^{3/5}$ occurs. Starting from that moment increasing of $M$ mostly affects the density of the complex components, not its size.References
- Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria, Random maps, coalescing saddles, singularity analysis, and Airy phenomena, Random Structures Algorithms 19 (2001), no. 3-4, 194–246. Analysis of algorithms (Krynica Morska, 2000). MR 1871555, DOI 10.1002/rsa.10021
- Edward A. Bender and E. Rodney Canfield, The number of rooted maps on an orientable surface, J. Combin. Theory Ser. B 53 (1991), no. 2, 293–299. MR 1129556, DOI 10.1016/0095-8956(91)90079-Y
- Edward A. Bender, Zhicheng Gao, and Nicholas C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin. 9 (2002), no. 1, Research Paper 43, 13. MR 1946145
- Manuel Bodirsky, Mihyun Kang, Mike Löffler, and Colin McDiarmid, Random cubic planar graphs, Random Structures Algorithms 30 (2007), no. 1-2, 78–94. MR 2283223, DOI 10.1002/rsa.20149
- Béla Bollobás, The evolution of random graphs, Trans. Amer. Math. Soc. 286 (1984), no. 1, 257–274. MR 756039, DOI 10.1090/S0002-9947-1984-0756039-5
- J. Bouttier, P. Di Francesco, and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin. 11 (2004), no. 1, Research Paper 69, 27. MR 2097335
- V. E. Britikov, Asymptotics of the number of forests made up of nonrooted trees, Mat. Zametki 43 (1988), no. 5, 672–684, 703 (Russian); English transl., Math. Notes 43 (1988), no. 5-6, 387–394. MR 954351, DOI 10.1007/BF01158847
- G. Chapuy, É. Fusy, O. Giménez, B. Mohar, and M. Noy, Asymptotic enumeration and limit laws for graphs of fixed genus, to appear in SIAM Journal of Discrete Mathematics.
- Philippe Chassaing and Gilles Schaeffer, Random planar lattices and integrated superBrownian excursion, Probab. Theory Related Fields 128 (2004), no. 2, 161–212. MR 2031225, DOI 10.1007/s00440-003-0297-8
- Chris Dowden, The evolution of uniform random planar graphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 7, 20. MR 2578902
- P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 125031
- MichałKaroński and Zbigniew Palka (eds.), Random graphs ’85, North-Holland Mathematics Studies, vol. 144, North-Holland Publishing Co., Amsterdam, 1987. Papers from the second international seminar on random graphs and probabilistic methods in combinatorics held at Adam Mickiewicz University, Poznań, August 5–9, 1985; Annals of Discrete Mathematics, 33. MR 930478
- Jean-François Le Gall, The topological structure of scaling limits of large planar maps, Invent. Math. 169 (2007), no. 3, 621–670. MR 2336042, DOI 10.1007/s00222-007-0059-9
- Stefanie Gerke, Colin McDiarmid, Angelika Steger, and Andreas Weißl, Random planar graphs with $n$ nodes and a fixed number of edges, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2005, pp. 999–1007. MR 2298359
- Stefanie Gerke, Dirk Schlatter, Angelika Steger, and Anusch Taraz, The random planar graph process, Random Structures Algorithms 32 (2008), no. 2, 236–261. MR 2387559, DOI 10.1002/rsa.20186
- Omer Giménez and Marc Noy, Asymptotic enumeration and limit laws of planar graphs, J. Amer. Math. Soc. 22 (2009), no. 2, 309–329. MR 2476775, DOI 10.1090/S0894-0347-08-00624-3
- Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic Press, New York-London, 1973. MR 0357214
- Svante Janson, Growth of components in random graphs, Proceedings of the Ninth International Conference “Random Structures and Algorithms” (Poznan, 1999), 2000, pp. 343–356. MR 1801138, DOI 10.1002/1098-2418(200010/12)17:3/4<343::AID-RSA8>3.3.CO;2-4
- Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel, The birth of the giant component, Random Structures Algorithms 4 (1993), no. 3, 231–358. With an introduction by the editors. MR 1220220, DOI 10.1002/rsa.3240040303
- Svante Janson, Tomasz Łuczak, and Andrzej Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR 1782847, DOI 10.1002/9781118032718
- Tomasz Łuczak, Component behavior near the critical point of the random graph process, Random Structures Algorithms 1 (1990), no. 3, 287–310. MR 1099794, DOI 10.1002/rsa.3240010305
- Tomasz Łuczak, Cycles in random graphs, Discrete Math. 98 (1991), no. 3, 231–236. MR 1144405, DOI 10.1016/0012-365X(91)90379-G
- T. Łuczak, The phase transition in a random graph, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993) Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 399–422. MR 1395867
- Tomasz Łuczak and Boris Pittel, Components of random forests, Combin. Probab. Comput. 1 (1992), no. 1, 35–52. MR 1167294, DOI 10.1017/S0963548300000067
- Tomasz Łuczak, Boris Pittel, and John C. Wierman, The structure of a random graph at the point of the phase transition, Trans. Amer. Math. Soc. 341 (1994), no. 2, 721–748. MR 1138950, DOI 10.1090/S0002-9947-1994-1138950-5
- Malwina Luczak and Tomasz Łuczak, The phase transition in the cluster-scaled model of a random graph, Random Structures Algorithms 28 (2006), no. 2, 215–246. MR 2198498, DOI 10.1002/rsa.20088
- Colin McDiarmid, Random graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), no. 4, 778–797. MR 2418771, DOI 10.1016/j.jctb.2007.11.006
- Colin McDiarmid and Bruce Reed, On the maximum degree of a random planar graph, Combin. Probab. Comput. 17 (2008), no. 4, 591–601. MR 2433943, DOI 10.1017/S0963548308009097
- Colin McDiarmid, Angelika Steger, and Dominic J. A. Welsh, Random planar graphs, J. Combin. Theory Ser. B 93 (2005), no. 2, 187–205. MR 2117936, DOI 10.1016/j.jctb.2004.09.007
- Deryk Osthus, Hans Jürgen Prömel, and Anusch Taraz, On random planar graphs, the number of planar graphs and their triangulations, J. Combin. Theory Ser. B 88 (2003), no. 1, 119–134. MR 1973264, DOI 10.1016/S0095-8956(02)00040-0
- G. Schaeffer, Conjugaison d’arbres et cartes combinatoires aléatoires, Ph.D. Thesis (in French), Université Bordeaux I, 1998.
- Oded Schramm, Conformally invariant scaling limits: an overview and a collection of problems, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 513–543. MR 2334202, DOI 10.4171/022-1/20
- W. T. Tutte, A census of planar maps, Canadian J. Math. 15 (1963), 249–271. MR 146823, DOI 10.4153/CJM-1963-029-x
- W. T. Tutte, A census of planar triangulations, Canadian J. Math. 14 (1962), 21–38. MR 130841, DOI 10.4153/CJM-1962-002-9
Additional Information
- Mihyun Kang
- Affiliation: Institut für Optimierung und Diskrete Mathematik (Math B), Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
- Email: kang@math.tugraz.at
- Tomasz Łuczak
- Affiliation: Department of Discrete Mathematics, Adam Mickiewicz University, 61-614 Poznań, Poland
- Email: tomasz@amu.edu.pl
- Received by editor(s): June 2, 2010
- Received by editor(s) in revised form: November 5, 2010
- Published electronically: March 13, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 4239-4265
- MSC (2010): Primary 05C10, 05C80; Secondary 05C30, 05A16
- DOI: https://doi.org/10.1090/S0002-9947-2012-05502-4
- MathSciNet review: 2912453