Boundary Harnack principle for $\Delta + \Delta ^{\alpha /2}$
HTML articles powered by AMS MathViewer
- by Zhen-Qing Chen, Panki Kim, Renming Song and Zoran Vondraček PDF
- Trans. Amer. Math. Soc. 364 (2012), 4169-4205 Request permission
Abstract:
For $d\geq 1$ and $\alpha \in (0, 2)$, consider the family of pseudo-differential operators $\{\Delta + b \Delta ^{\alpha /2}; b\in [0, 1]\}$ on $\mathbb {R}^d$ that evolves continuously from $\Delta$ to $\Delta + \Delta ^{\alpha /2}$. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for non-negative functions which are harmonic with respect to $\Delta +b \Delta ^{\alpha /2}$ (or, equivalently, the sum of a Brownian motion and an independent symmetric $\alpha$-stable process with constant multiple $b^{1/\alpha }$) in $C^{1, 1}$ open sets. Here a “uniform” BHP means that the comparing constant in the BHP is independent of $b\in [0, 1]$. Along the way, a uniform Carleson type estimate is established for non-negative functions which are harmonic with respect to $\Delta + b \Delta ^{\alpha /2}$ in Lipschitz open sets. Our method employs a combination of probabilistic and analytic techniques.References
- Alano Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 169–213, x (French, with English summary). MR 513885
- David H. Armitage and Stephen J. Gardiner, Classical potential theory, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2001. MR 1801253, DOI 10.1007/978-1-4471-0233-5
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- Richard F. Bass and Krzysztof Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. of Math. (2) 134 (1991), no. 2, 253–276. MR 1127476, DOI 10.2307/2944347
- Richard F. Bass and Krzysztof Burdzy, A probabilistic proof of the boundary Harnack principle, Seminar on Stochastic Processes, 1989 (San Diego, CA, 1989) Progr. Probab., vol. 18, Birkhäuser Boston, Boston, MA, 1990, pp. 1–16. MR 1042338
- Richard F. Bass and Zhen-Qing Chen, Systems of equations driven by stable processes, Probab. Theory Related Fields 134 (2006), no. 2, 175–214. MR 2222382, DOI 10.1007/s00440-004-0426-z
- Krzysztof Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), no. 1, 43–80. MR 1438304, DOI 10.4064/sm-123-1-43-80
- Krzysztof Bogdan, Krzysztof Burdzy, and Zhen-Qing Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), no. 1, 89–152. MR 2006232, DOI 10.1007/s00440-003-0275-1
- Krzysztof Bogdan, Andrzej Stós, and PawełSztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math. 50 (2002), no. 3, 361–372. MR 1948083
- Krzysztof Bogdan, Tomasz Byczkowski, Tadeusz Kulczycki, Michal Ryznar, Renming Song, and Zoran Vondraček, Potential analysis of stable processes and its extensions, Lecture Notes in Mathematics, vol. 1980, Springer-Verlag, Berlin, 2009. Edited by Piotr Graczyk and Andrzej Stos. MR 2569321, DOI 10.1007/978-3-642-02141-1
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI 10.1512/iumj.1981.30.30049
- Luis A. Caffarelli, Sandro Salsa, and Luis Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math. 171 (2008), no. 2, 425–461. MR 2367025, DOI 10.1007/s00222-007-0086-6
- Luis Caffarelli and Luis Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), no. 5, 597–638. MR 2494809, DOI 10.1002/cpa.20274
- Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903–1930. MR 2680400, DOI 10.4007/annals.2010.171.1903
- Zhen-Qing Chen, Multidimensional symmetric stable processes, Korean J. Comput. Appl. Math. 6 (1999), no. 2, 227–266. MR 1687746
- Zhen-Qing Chen, On notions of harmonicity, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3497–3510. MR 2515419, DOI 10.1090/S0002-9939-09-09945-6
- Zhen-Qing Chen, Panki Kim, and Renming Song, Heat kernel estimates for $\Delta +\Delta ^{\alpha /2}$ in $C^{1,1}$ open sets, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 58–80. MR 2819690, DOI 10.1112/jlms/jdq102
- Z.-Q. Chen, P. Kim, R. Song and Z. Vondraček, Sharp Green function estimates for $\Delta + \Delta ^{\alpha /2}$ in $C^{1,1}$ open sets and their applications. To appear in Illinois J. Math., 2011.
- Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for stable-like processes on $d$-sets, Stochastic Process. Appl. 108 (2003), no. 1, 27–62. MR 2008600, DOI 10.1016/S0304-4149(03)00105-4
- Zhen-Qing Chen and Takashi Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields 140 (2008), no. 1-2, 277–317. MR 2357678, DOI 10.1007/s00440-007-0070-5
- Zhen-Qing Chen and Takashi Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps, Rev. Mat. Iberoam. 26 (2010), no. 2, 551–589. MR 2677007, DOI 10.4171/RMI/609
- Zhen-Qing Chen and Steffen Rohde, Schramm-Loewner equations driven by symmetric stable processes, Comm. Math. Phys. 285 (2009), no. 3, 799–824. MR 2470906, DOI 10.1007/s00220-008-0674-3
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- E. Fabes, N. Garofalo, S. Marín-Malave, and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), no. 2, 227–251. MR 1028741, DOI 10.4171/RMI/73
- Maria Giovanna Garroni and Jose Luis Menaldi, Second order elliptic integro-differential problems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 430, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1911531, DOI 10.1201/9781420035797
- Tomasz Grzywny and MichałRyznar, Estimates of Green functions for some perturbations of fractional Laplacian, Illinois J. Math. 51 (2007), no. 4, 1409–1438. MR 2417435
- Q.-Y. Guan, Boundary Harnack inequality for regional fractional Laplacian. arXiv:0705.1614v3 [math.PR]
- Espen R. Jakobsen, Kenneth H. Karlsen, and Claudia La Chioma, Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions, Numer. Math. 110 (2008), no. 2, 221–255. MR 2425156, DOI 10.1007/s00211-008-0160-z
- Aleksander Janicki and Aleksander Weron, Simulation and chaotic behavior of $\alpha$-stable stochastic processes, Monographs and Textbooks in Pure and Applied Mathematics, vol. 178, Marcel Dekker, Inc., New York, 1994. MR 1306279
- Panki Kim and Renming Song, Potential theory of truncated stable processes, Math. Z. 256 (2007), no. 1, 139–173. MR 2282263, DOI 10.1007/s00209-006-0063-6
- Panki Kim and Renming Song, Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab. 21 (2008), no. 2, 287–321. MR 2391246, DOI 10.1007/s10959-008-0145-y
- Panki Kim, Renming Song, and Zoran Vondraček, Boundary Harnack principle for subordinate Brownian motions, Stochastic Process. Appl. 119 (2009), no. 5, 1601–1631. MR 2513121, DOI 10.1016/j.spa.2008.08.003
- Panki Kim, Renming Song, and Zoran Vondraček, On the potential theory of one-dimensional subordinate Brownian motions with continuous components, Potential Anal. 33 (2010), no. 2, 153–173. MR 2658980, DOI 10.1007/s11118-009-9163-3
- J. Klafter, M. F. Shlesinger and G. Zumofen, Beyond Brownian motion. Physics Today 49 (1996), 33–39.
- R. Mikulyavichyus and G. Pragarauskas, Nonlinear potentials of the Cauchy-Dirichlet problem for the Bellman integro-differential equation, Liet. Mat. Rink. 36 (1996), no. 2, 178–218 (Russian, with Lithuanian summary); English transl., Lithuanian Math. J. 36 (1996), no. 2, 142–173 (1997). MR 1432798, DOI 10.1007/BF02986896
- Bernt Øksendal and Agnès Sulem, Applied stochastic control of jump diffusions, 2nd ed., Universitext, Springer, Berlin, 2007. MR 2322248, DOI 10.1007/978-3-540-69826-5
- Murali Rao, Renming Song, and Zoran Vondraček, Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal. 25 (2006), no. 1, 1–27. MR 2238934, DOI 10.1007/s11118-005-9003-z
- Renming Song and Zoran Vondraček, Harnack inequality for some discontinuous Markov processes with a diffusion part, Glas. Mat. Ser. III 40(60) (2005), no. 1, 177–187. MR 2195869, DOI 10.3336/gm.40.1.15
- Renming Song and Zoran Vondraček, Parabolic Harnack inequality for the mixture of Brownian motion and stable process, Tohoku Math. J. (2) 59 (2007), no. 1, 1–19. MR 2321989
- Renming Song and Zoran Vondraček, On the relationship between subordinate killed and killed subordinate processes, Electron. Commun. Probab. 13 (2008), 325–336. MR 2415141, DOI 10.1214/ECP.v13-1388
- Renming Song and Jang-Mei Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (1999), no. 2, 403–427. MR 1719233, DOI 10.1006/jfan.1999.3470
- PawełSztonyk, Boundary potential theory for stable Lévy processes, Colloq. Math. 95 (2003), no. 2, 191–206. MR 1967420, DOI 10.4064/cm95-2-4
- Jang Mei G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 147–167, vi (English, with French summary). MR 513884
Additional Information
- Zhen-Qing Chen
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
- MR Author ID: 242576
- ORCID: 0000-0001-7037-4030
- Email: zqchen@uw.edu
- Panki Kim
- Affiliation: Department of Mathematical Science, Seoul National University, Seoul 151-747, South Korea
- MR Author ID: 705385
- Email: pkim@snu.ac.kr
- Renming Song
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- MR Author ID: 229187
- Email: rsong@math.uiuc.edu
- Zoran Vondraček
- Affiliation: Department of Mathematics, University of Zagreb, Bijenička c. 30, Zagreb, Croatia
- MR Author ID: 293132
- Email: vondra@math.hr
- Received by editor(s): September 23, 2010
- Published electronically: March 19, 2012
- Additional Notes: The first author’s research was supported by NSF Grants DMS-0600206 and DMS-0906743.
The second author’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-00001251)
The fourth author’s research was supported by MZOS grant 037-0372790-2801 of the Republic of Croatia. - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 364 (2012), 4169-4205
- MSC (2010): Primary 31B25, 60J45; Secondary 47G20, 60J75, 31B05
- DOI: https://doi.org/10.1090/S0002-9947-2012-05542-5
- MathSciNet review: 2912450