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ON THE GLOBAL SOLVABILITY

FOR OVERDETERMINED SYSTEMS

ADALBERTO P. BERGAMASCO, ALEXANDRE KIRILOV,

WAGNER VIEIRA LEITE NUNES, AND SÉRGIO LUÍS ZANI

Abstract. We consider a class of systems of two smooth vector fields on the
3-torus associated to a closed 1-form. We prove that the global solvability
is completely determined by the connectedness of the sublevel and superlevel
sets of a primitive of this 1-form in the minimal covering.

1. Introduction

Let Tn = (R/2πZ)n be the n-dimensional torus, and let b be a smooth, real,
closed 1-form defined on T2, and consider the line subbundle, T ′, of the complexified
cotangent bundle C⊗T ∗(T3) spanned by the 1-form dx−ib(t) ∈

∧1 C∞(T3), where
(t, x) = (t1, t2, x) are the coordinates in T

3. The orthogonal bundle V = (T ′)⊥

is then a vector subbundle of the complexified tangent bundle C ⊗ T (T3) whose
fibers have dimension two. The subbundle V is a locally integrable structure of
codimension one over T3 spanned by the vector fields

(1.1) Lj =
∂

∂tj
+ ibj(t)

∂

∂x
, j = 1, 2.

For further information on these concepts and ideas we refer the reader to the
works [18] of Treves and [13] of Berhanu, Cordaro and Hounie.

Let dt be the exterior derivative in T2, and consider the differential operator L0

which acts on functions—or distributions—on the torus by means of

(1.2) L
0u = dtu+ ib(t) ∧ ∂

∂x
u.

In this work we are interested in global solvability in the sense that given any
smooth f satisfying natural compatibility conditions, there should exist a distribu-
tion u such that L0u = f .

The gist of the present article is that the global solvability of the operator L0

is completely determined by the connectedness of the sublevel and superlevel sets
of a primitive of b, more precisely, a primitive of the pull-back of b to a convenient
covering space of T2, the choice of which will depend on the periods of this 1-form.

When b is an exact 1-form, there exists a global primitive of b on the manifold
itself and in this case the global solvability is equivalent to the connectedness of
all superlevel and sublevel sets of the primitive, as has been proved by Cardoso
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and Hounie in [14]. For the proof of sufficiency the authors used an embedding of
the manifold into a space of higher dimension, via Whitney’s theorem, and then
applied a semiglobal result from the pioneering work of Treves in [17].

When the 1-form b is closed, but nonexact, it makes sense to ask if L0 is globally
solvable; on the other hand, a global primitive of b does not exist on the manifold,
hence it is not immediately clear what kind of condition bearing on b would yield
global solvability.

In order to deal with this difficulty, Bergamasco, Nunes and Zani in [8, 9], and
Bergamasco and Kirilov in [6], used an approach based on the study of the properties
of a primitive of the pull-back of b via the universal covering Π : R2 → T2.

The results obtained in [6] concern the case when the periods of b are incommen-
surable, that is, rationally independent. In that case, the authors proved that L0 is
globally solvable if and only if the sublevels Ωr = {t ∈ R2;B(t) < r} and the super-

levels Ωr = {t ∈ R
2;B(t) > r} are connected, for all r ∈ R, where B(t) =

∫ t

t0
Π∗b is

a primitive of the pull-back of b via the universal covering Π : R2 → T2.
In this work we study the remaining case, namely, the case when b is closed,

nonexact and has commensurable periods. Our present results provide necessary
and sufficient conditions for the global solvability by means of an analysis of the
connectedness of superlevel and sublevel sets of a primitive of a pull-back of b to
the cylinder T× R.

In fact, we present a characterization of global solvability by means of what we
call a minimal covering of T2 with respect to the 1-form b, in such a way as to unify
the results obtained in [6, 14] with the ones proved in the present work.

Other works dealing with global properties such as solvability and hypoellipticity
of systems of vector fields are [2, 3, 12], while [1, 4, 5, 7, 10, 11, 16] treat the case
of a single vector field.

This article is organized as follows. In section 2 we present more details of the
problem and two equivalent formulations of our main result. In section 3 we consider
a model case and present the construction of f satisfying the natural compatibility
conditions such that L0u = f has no solution. In section 4 we show that the general
case (with disconnected superlevels or sublevels) can be reduced to the model case
by diffeomorphisms of the torus. To reach this reduction, we make use of Sard’s
lemma and some properties of regular level sets. In section 5 we prove that the
condition of connected superlevel and sublevel sets is sufficient for global solvability.

2. Preliminaries and statement of the main theorem

In this work the property which will play a decisive role regarding the global
solvability of L0 is the connectedness of sublevel and superlevel sets of a global
primitive of a pull-back of b to a convenient covering space of T2. The choice of
such a covering will depend on the periods

(2.1) b10 =
1

2π

∫ 2π

0

b1(τ1, 0)dτ1 and b20 =
1

2π

∫ 2π

0

b2(0, τ2)dτ2.

The group of periods of b is defined by

Per(b)
.
=

{
1

2π

∫
σ

b ; σ is a loop in T
2

}
;

equivalently, Per(b) is the additive subgroup of R consisting of all integral combi-
nations of the numbers b10, b20.
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The possible values for r
.
= rank(Per(b)) are r = 0, 1, and 2.

i. If r = 0, the 1-form b is exact, that is, there exists B ∈ C∞(T2;R) with
dB = b.

ii. If r = 1, the periods b10, b20 are rationally dependent but are not both
equal to 0; in this case we say that the periods of b are commensurable.

iii. If r = 2, the periods b10, b20 are rationally independent; here we say that
the periods of b are incommensurable.

We now present the definition of a minimal covering.

Definition 2.1. Let b be a smooth, real, closed 1-form defined on the two-dimen-
sional torus T2. A minimal covering of T2, with respect to the 1-form b, is a
covering space Π : T → T2 such that Π∗b is exact and furthermore such that there
is no smaller covering with the same property.

Remark 2.2. We have three possibilities for minimal coverings of T
2, with respect

to the 1-form b, namely:

i. if b is exact, then T = T2;
ii. if the periods of b are commensurable, then T � T× R (diffeomorphic);
iii. if the periods of b are incommensurable, then T = R2.

We now present our definition of global solvability.

Definition 2.3. Let E be the set of all f1dt1 + f2dt2 ∈ C∞(
∧1

(T3)) satisfying
L1f2 = L2f1 and

∫
T2 fj(t, x)dtjdx = 0, j = 1, 2.

The operator L0 is said to be globally solvable on T
3 if for any f ∈ E there exists

u ∈ D′(T3) satisfying L0u = f.

It is not difficult to prove that if f=̇f1dt1+f2dt2 ∈ C∞(
∧1(T3)) is such that there

is u ∈ D′(T3) with L0u = f, then
∫
T2 fj(t, x)dtjdx = 0, j = 1, 2 and L1f2 = L2f1.

This supports our definition. We are now ready to state our main result.

Theorem 2.4. Let b ∈
∧

1C∞(T2) be a closed 1-form and set B(t)
.
=

∫ t

0
Π∗b, where

Π : T → T2 is the minimal covering, in the sense of Definition 2.1, and Π∗b is the
pull-back of b. The operator L0 = dt + ib(t)∧ ∂/∂x is globally solvable if and only if
the sublevels Ωr = {τ ∈ T ;B(τ ) < r} and the superlevels Ωr = {τ ∈ T ;B(τ ) > r}
are connected, for every r ∈ R.

Remark 2.5. In order to prove the theorem above we will make use of diffeomor-
phisms of T2 and also of the induced diffeomorphisms of the covering space. Note
that if T and T ′ are covering spaces and Φ : T ′ → T is a diffeomorphism, then the
connectedness of all superlevels (sublevels) of a continuous function B : T → R is
equivalent to the connectedness of all superlevels (sublevels) of B ◦ Φ.

We now make some remarks and provide examples with the purpose of clarifying
the assumptions of connectedness in the theorem.

If b is an exact 1-form it is essential to consider the minimal covering in the above
theorem as the following example shows: if L1 = ∂/∂t1 − i sin t1∂/∂x, L2 = ∂/∂t2,
then B(t1, t2) = cos t1 has connected sublevel and superlevel sets both in T2 (hence
L
0 is globally solvable) and in Tt1 × Rt2 , but neither in R

2 nor in Rt1 × Tt2 .
If b is a closed nonexact 1-form with commensurable periods, then up to a dif-

feomorphism of the torus T2, the minimal covering space is T = T × R. Observe

that, if we set B1(t)
.
=

∫ t

0
Π∗

1b and B2(t)
.
=

∫ t

0
Π∗

2b, where Π1 : T × R → T2 is the
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minimal covering and Π2 : R2 → T2 is the universal covering, then for each r ∈ R

we have:

i. Ω1,r is connected if and only if Ω2,r is connected,
ii. Ωr

1 is connected if and only if Ωr
2 is connected,

where Ωj,r=̇{τ ∈ R2;Bj(τ ) < r} and Ωr
j
.
= {τ ∈ T× R;Bj(τ ) > r} for j = 1, 2.

On the other hand, when Ωr
1 and Ωr

2 are disconnected, the number of connected
components of these two sets is, in general, different. For example, if b(t1, t2) =
cos(t1+ t2)dt1+(cos(t1+ t2)− 1/2π)dt2, then B(t1, t2) = sin(t1+ t2)− t2/2π, with
(t1, t2) ∈ T×R. Taking r = 0 we have that Ω0

1 has only two connected components,
while Ω0

2 has infinitely many connected components. The same result is true for
Ω1,0 and Ω2,0.

In view of these remarks, we may rewrite Theorem 2.4 as follows.

Theorem 2.6. Let b be a smooth closed 1-form on T
2 and L

0 = dt+ ib(t)∧ ∂/∂x.

i. If b is exact and B(t)
.
=

∫ t

0
b, then the operator L0 is globally solvable if and

only if the sublevels {τ ∈ T
2;B(τ ) < r} and the superlevels {τ ∈ T

2;B(τ ) >
r} are connected, for every r ∈ R.

ii. If b is nonexact and B(t)
.
=

∫ t

0
Π∗b, where Π : R2 → T2 is the universal

covering, then the operator L0 is globally solvable if and only if the sublevels
{τ ∈ R2;B(τ ) < r} and the superlevels {τ ∈ R2;B(τ ) > r} are connected,
for every r ∈ R.

Taking into account the results of [6] and [14], we need only analyze the com-
mensurable case.

3. Necessity: The model case

In this section we show that, in a special situation, which we will refer to as the
model case, we are able to construct an f ∈ E (see Definition 2.3) for which the
equation L

0u = f has no solution u ∈ D′(T3).
We will call the model case the case when the 1-form b has the following prop-

erties: b20 < b10 = 0, (0, 0) ∈ Π−1(Σ), where Σ
.
= {t ∈ T2 : b(t) = 0} is the critical

set of b, B(0, 0) = 0 and M > M ′ � 0, where

(3.1) M
.
= max

t∈[0,2π]2
B(t) = B(0, t∗2) and M ′ .

= max
t1∈[0,2π]

B(t1, 0).

Let us consider M1 and δ > 0 such that M ′ < M1 < M and

(3.2) max {B(t1, t2)−B(0, t2) : 0 � t1 � 2π, |t2| � δ} � M1.

In order to exhibit an f = f1dt1 + f2dt2 ∈ E such that the equation L0u = f,
or equivalently, L1u = f1, L2u = f2, has no solution u ∈ D′(T3), we need to verify
that the compatibility condition L

1f = 0 or, equivalently, L1f2 = L2f1 is satisfied.
We choose f1 ≡ 0; then f2 must verify L1f2 = 0. We expand f2 in its x-Fourier

series

f2(t, x) =
1

2π

∞∑
n=−∞

f̂2(t, n)e
inx.

Any possible solution to the equation L2u = f2 can be written in the form of an
x-Fourier series, namely,

u(t, x) =
1

2π

∞∑
n=−∞

û(t, n)einx.
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In fact, the partial Fourier coefficients of u must be solutions to

(3.3) (∂/∂t2 − n b2(t1, t2)) û(t, n) = f̂2(t, n), n ∈ Z.

Since b20 < 0, we have 1− e2πnb20 	= 0, for all n 	= 0. It follows that when n 	= 0
this equation has a unique solution given by

(3.4) û(t, n) = d2n

∫ 2π

0

e−in[B(t1,t2)−B(t1,t2−s2)]f̂2(t1, t2 − s2, n) ds2,

where d2n
.
= (1− e2πn b20)−1.

In fact, we will use only positive frequencies and, thus, look for f2 of the form

f2(t, x) =
1

2π

∞∑
n=1

f̂2(t, n)e
inx ;

then, up to a constant, any possible solution to L2u = f2 can be written as

u(t, x) =
1

2π

∞∑
n=1

û(t, n)einx.

Now we proceed to make the choice of each f̂2(t, n), with n � 1. Let us consider
an auxiliary function χδ ∈ C∞

c (R) satisfying the conditions

χδ(t2) = 1, if |t2| < δ,
χδ(t2) = 0, if |t2| � 2δ,
0 � χδ(t2) � 1, t2 ∈ R,

where δ > 0 is as in (3.2). If necessary, we take a smaller δ so that 0 < 2δ < t∗2 <
2π − 2δ, where t∗2 is as in (3.1), and we consider the smooth 2π-periodic function
q : R2 → R such that, for (t1, t2) ∈ Q∗ .

= [0, 2π]× [−π, π] it is given by

(3.5) q(t1, t2) = q(t2)
.
= (t22 − 1) · χδ(t2) + 1.

Finally, for each (t1, t2) ∈ R2, we define

(3.6) f̂2(t1, t2, n)
.
= en[ε+B(t1,t2)−B(0,t2)−M−Kq(t2)], n � 1,

where ε > 0 and K > 0 will be chosen later on.

Proposition 3.1. There are ε > 0 and K > 0 such that if f1 = 0 and f2 is as
above, then f=̇f1dt1 + f2dt2 ∈ E. Furthermore, the same conclusion will hold if we
replace ε > 0 by any ε′ > 0 with 0 < ε′ < ε, and also if we replace K > 0 by any
K ′ > 0 with 0 < K < K ′.

Proof. We will prove that f2 ∈ C∞(T3) and L1f2 = 0.

It is easy to see that, for each n ∈ N, f̂2(·, ·, n) is 2π-periodic in both variables

(recall that b10 = 0) and (∂/∂t1 − n b1(t1, t2)) f̂2(t1, t2, n) = 0, for all (t1, t2) ∈ R
2;

as soon as we prove that f2 is smooth, it will follow from this that L1f2 = 0. Since
f1 = 0, we will have L1f2 = L2f1.

Recall that, by (3.2), B(t1, t2)−B(0, t2) � M1 for all 0 � t2 < δ. Since q(t) � 0
for all t ∈ [0, 2π]2, if we choose 0 < ε < M −M1, we have

(3.7) ε+B(t1, t2)−B(0, t2)−M −Kq(t2) � ε+M1 −M < 0.

Note that, if 0 < 2π − t2 < δ, then

B(t1, t2)−B(0, t2) = B(t1, t2 − 2π)−B(0, t2 − 2π) < M1.

Thus, we also have (3.7) for 0 < 2π − t2 < δ.
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If t ∈ [0, 2π]2 and δ � t2 � π, then q(t2) � (δ2−1)χδ(t2)+1 � δ2, since χδ(t2) ≤
1. If t ∈ [0, 2π]2 and π � t2 � 2π−δ, then q(t2) = ((t2−2π)2−1)χδ(t2−2π)+1 � δ2.
Now choosing K such that

(3.8) K >
ε−m

δ2
,

where m
.
= min{B(0, t2); 0 � t2 � 2π}, we have

ε+B(t1, t2)−B(0, t2)−M −Kq(t2) < ε−m−Kδ2 < 0,

for all t ∈ [0, 2π]2 with δ � t2 � 2π − δ.
Finally, if λ

.
= max{ε+M1 −M, ε−m−Kδ2}, we have λ < 0 and

|f̂2(t, n)| = en[ε+B(t1,t2)−B(0,t2)−M−Kq(t2)] � enλ,

for all t ∈ [0, 2π]2 and n ∈ N.

Now, for α, β ∈ Z+, we may write ∂(α,β)f̂2(t, n) = f̂2(t, n)P (t, n, α, β), where
P (t, n, α, β) satisfies

|P (t, n, α, β)| � Cα,β nα+β, ∀n ∈ N and ∀t ∈ [0, 2π]2,

for some Cα,β > 0.
Therefore

|∂(α,β)f̂2(t, n)| = |f̂2(t, n)| |P (t, n, α, β)| � Cα,β nα+β enλ,

for all n ∈ N and t ∈ [0, 2π]2, hence f2 ∈ C∞(T3).
In view of the fact that f2 contains only nonzero frequencies, it is easy to see

that we have
∫
T2 f2(t, x)dt2dx = 0.

Since we trivially have
∫
T2 f1(t, x)dt1dx = 0, the proof is complete. �

We now proceed to state the main result of this section.

Proposition 3.2. There exists no periodic distribution whose sequence of x-Fourier
coefficients is given by (3.4) and (3.6).

Proof. We will analyze the behavior of û(0, t∗2, n), where t∗2 is as in (3.1). From
(3.4) and (3.6) we have

(3.9) û(t, n) = d2n

∫ 2π

0

en[φ(t1,t2,s2)+ε] ds2,

where
φ(t1, t2, s2) = [B(t1, t2)−B(0, t2 − s2)−M −Kq(t2 − s2)] .

We observe that φ(0, t∗2, s2) = −B(0, t∗2−s2)−Kq(t∗2−s2). From (3.9) we obtain

(3.10) û(0, t∗2, n) = d2n(In + Jn),

where

In
.
=

∫
|t∗2−s2|<δ

en[φ(0,t
∗
2 ,s2)+ε]ds2 and Jn

.
=

∫
|t∗2−s2|>δ

en[φ(0,t
∗
2 ,s2)+ε]ds2.

In the region |t∗2 − s2| < δ, we have χδ(t
∗
2− s2) = 1, hence

φ(0, t∗2, s2) = −B(0, t∗2 − s2)−K(t∗2 − s2)
2

and

(3.11) In = enε
∫
|t∗2−s2|<δ

e−n[B(0,t∗2−s2)+K(t∗2−s2)
2]ds2.
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We perform the change of variables σ = t∗2 − s2 in (3.11) to obtain

In = enε
∫
|σ|<δ

e−ng(σ)dσ,

where g(σ) = B(0, σ) +Kσ2.
Since g(0) = g′(0) = 0 and g′′(0) = ∂b2/∂t2(0, 0) + 2K, we may choose a larger

K > 0 and a smaller δ > 0 to obtain g′′(0) > 0 and therefore the origin will be
the only critical point of the function g on |σ| < δ, which implies that there exist
constants C1, C2 > 0 such that

C2σ
2 � g(σ) � C1σ

2, ∀σ ∈ (−δ, δ).

It follows that

enε
∫
|σ|<δ

e−nC1σ
2

dσ � In � enε
∫
|σ|<δ

e−nC2σ
2

dσ.

We use new variables τ = σ
√
nC1 in the integral on the left and τ = σ

√
nC2 in

the integral on the right above to obtain

R1(n)e
nε 1

nC1
� In � R2(n)e

nε 1

nC2
,

where Rj(n) =

∫
|τ |<δ

√
nCj

e−τ2

dτ, for j = 1, 2.

Observe that {Rj(n)}n∈N are increasing sequences, j = 1, 2, and

Rj(1) � Rj(n) �
∫
R

e−σ2

dσ =
√
π, j = 1, 2,

hence R1(1)e
nε 1

nC1
� In � √

πenε 1
nC2

.

Take n0 ∈ N such that R1(1)(nC1)
−1 exp(nε/2) � 1, for all n � n0, which

implies In � en
ε
2 , for all n � n0. Since Jn � 0, it follows that

û(0, t∗2, n) = d2n(In + Jn) � d2nIn � d2ne
n ε

2 ,

for all n � n0.
We have d2n � 1/2, thus |û(0, t∗2, n)| � 1

2e
nε/2 for all n � n0. We conclude that

the sequence {û(0, t∗2, n)} does not correspond to any periodic distribution. �

Putting together the results of this section, we reach the conclusion that, in the
model case, the operator L0 is not globally solvable in T3.

4. Necessity: The reduction to the model case

The goal of this section is, starting from the assumption of the existence of a

disconnected sublevel or superlevel set of B(t) =
∫ t

0
Π∗b, to find a smooth diffeo-

morphism of T2 that reduces our problem to the model case.
Since b10 and b20 are commensurable, by using diffeomorphisms of the two-

dimensional torus given by elements of U(2,Z) (see [9, page 56]) we may assume
that

(4.1) b20 < b10 = 0.
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In fact, since b10 and b20 are rationally dependent, there exist relatively prime
integers p and q such that pb10 + qb20 = 0. Take r, s ∈ Z such that pr+ qs = 1 and
consider the diffeomorphism Ψ : T2 → T

2 given by

Ψ(t′1, t
′
2)

.
= (pt′1 − st′2, qt

′
1 + rt′2)

.
= (t1, t2).

Let B(t1, t2) be a primitive of b defined on a cylinder of coordinates (t1, t2).
Thus, B(t1, t2) = P (t1, t2) + b10t1 + b20t2, where P is periodic. Then B′ .

= B ◦ Ψ
is also a primitive of b on a cylinder of coordinates (t′1, t

′
2). We have B′(t′1, t

′
2) =

P (pt′1 − st′2, qt
′
1 + rt′2) + (b20r − b10s)t

′
2. Hence, in these new coordinates b has one

null period.
Assume b10 = 0. If b20 < 0 we are done. If b20 > 0 consider the diffeomorphism

Ψ(t′1, t
′
2) = (t′1,−t′2)

.
= (t1, t2). Then for B′ .

= B ◦ Ψ we have b′20 < 0. Thus, if
B(t1, t2) = P (t1, t2) + b20t2, then B′(t′1, t

′
2)

.
= B(Ψ(t′1, t

′
2)) = P (t′1,−t′2) − b20t

′
2.

Hence, in the new coordinates, b has one null period and a negative one.
Finally, since we are assuming that B has a disconnected sublevel or superlevel

set, by Remark 2.5 the same is true for B′.
In order to keep the notation light we will use the same symbols for the coeffi-

cients of the 1-form b as for the coefficients of the pull-back of b ∈
∧1 C∞(T2) via

the minimal covering Π : T× R → T
2; in other words we will write

(Π∗b)(t) = b1(t)dt1 + b2(t)dt2,

where the functions b1, b2 ∈ C∞(T× R) are 2π-periodic in the second variable.
Since Π∗b is a closed 1-form, and since b10 = 0, the function B : T × R → R

given by

(4.2) B(t) =

∫ t

0

Π∗b, t ∈ T× R

is a well-defined primitive of Π∗b.

Remark 4.1. Since b10 = 0 we have B(t) = P (t)+b20 · t2, for all t = (t1, t2) ∈ T×R,
where P ∈ C∞(T× R) is a 2π-periodic function in the second variable.

Let us denote by F(t) the level set of B which contains t ∈ T× R and by F ′(t)
the connected component of F(t) which contains t ∈ T× R.

It follows from the above remark that each level set F(t) of B is contained in
a cylindric strip T × [α, β]. Moreover every superlevel set and every sublevel set
contain a half-cylinder T×(−∞, β), or T×(α,∞), respectively. It is clear that each
superlevel and each sublevel contains a unique unbounded connected component.

4.1. Characterization of the regular level sets of B. We say that the real
number r is a regular value of the function B when there are no critical points of
B at level r; that is, if B(t) = r, then dB(t) 	= 0. When r is a regular value we say
that the corresponding level set is a regular level.

Definition 4.2. We say that a subset G ⊂ T × R is trivial if there exists a sim-
ply connected open subset of T × R containing G. Otherwise, we say that G is
nontrivial.

The following result gives a characterization of the regular levels.
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Proposition 4.3. If B(t) is a regular value of B and F(t) is the corresponding
regular level set then:

i. Each connected component of F(t) is diffeomorphic to T.
ii. Each connected component, say F ′, of F(t) is contained in an open set,

V, diffeomorphic to an annulus, which is foliated by connected components
of pairwise distinct level sets, each one of these being diffeomorphic to T.
Furthermore dB(t) 	= 0 on this open set. Moreover, the points on one side
of F ′ belong to a sublevel set of B whereas the points on the other side of
F ′ belong to a superlevel set. In particular, the level B(t) occurs in V only
at F ′.

iii. F(t) has only a finite number of connected components.
iv. F(t) has at least one nontrivial connected component.

Proof. Since B(t) is a regular value, F(t) is an embedded one-dimensional subman-
ifold of T × R. It follows that each connected component of F(t) is diffeomorphic
either to T or to R. On the other hand, F(t) is contained in a cylindric strip T×[c, d],
hence the case of a component diffeomorphic to R cannot occur, which proves i.

By assumption, we have dB(t) 	= 0 at each point of the connected component
F ′, hence there is a local foliation by level sets of B. By compactness, we obtain
a foliated neighborhood of F ′ by connected components of level sets of B with
pairwise distinct levels. From this it is clear that all statements in ii hold true.

It follows from ii that each connected component of F(t) is isolated from the
others. Recalling that the whole level set F(t) is contained in a compact strip
T× [c, d], we conclude that the number of components is finite, which proves iii.

To prove iv, let us suppose otherwise, that is, there exists a regular level set
F(t0) which has only trivial connected components.

In view of iii, the number of regular connected components having the same
level is finite, hence we may write

(4.3) T× R \ F(t0) = U 0 ∪
m⋃
j=1

U j ,

where U 0 is the unique unbounded connected component and each U j is a bounded
open set which satisfies ∂Uj ⊆ F(t0), j = 1, . . . ,m.

The function B is continuous on the connected set U 0 and never attains the
value B(t0) there, hence we must have either B(τ ) < B(t0), for all τ ∈ U 0, or else
B(τ ) > B(t0), for all τ ∈ U 0, which contradicts the fact that both the sublevel
ΩB(t0) and the superlevel ΩB(t0) contain a half-cylinder. �

We remark that Proposition 4.3ii is valid assuming only that F ′ is a connected
component of a level set such that dB(p) 	= 0 for each p ∈ F ′.

Definition 4.4. A normal curve is a nontrivial (in the sense of Definition 4.2)
connected component of a level set of B such that dB 	= 0 at each of its points.

In this work, we use Sard’s lemma for functions defined on T×R, the statement
of which we now recall.

Lemma 4.5 (Sard). If f : T × R → R is a smooth and surjective function, then
the set of critical values of f has Lebesgue measure zero. In particular, the set of
regular values of f is dense in R.
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4.2. The reduction to the model case. We now proceed to describe the an-
nounced reduction. In order to achieve this we will rely on the notation and results
of the above subsection.

We make the remark that we may work either with the case when B has a
disconnected sublevel, say, Ωρ, or the case when B has a disconnected superlevel,
say, Ωρ. For this, if necessary, we make a change of variables in T3, namely, (t, x) �→
(−t,−x). Note that the property (4.1) is preserved under this change of variables.
In order to fix the ideas we will concentrate—for now—on the case of a disconnected
sublevel.

Since every sublevel of B contains a unique unbounded connected component
(which contains an upper half-cylinder), the sublevel Ωρ has at least one bounded

connected component which we denote by Ω�
ρ.

We may assume that ρ is a regular value of B; indeed, if ρ is a critical value,
then Sard’s lemma implies the existence of a regular value r ∈ R, with ρ > r, such
that B(t∗) = r for some t∗ ∈ Ω�

ρ. Since B(t∗) < ρ and B(t) = ρ, for all t ∈ ∂Ω�
ρ, we

have F ′(t∗) ⊂ Ω�
ρ. Since r is a regular value it follows from Proposition 4.3iv, that

F ′(t∗) has a neighborhood foliated by level curves, all of them with distinct values
of B. Therefore B has a regular value r, whose sublevel Ωr is disconnected and has
a bounded connected component, Ω�

r, such that F ′(t∗) ⊂ ∂Ω�
r, which concludes the

proof of our claim.
We claim that ∂Ω�

ρ is equal to a finite union of connected components of F(t)

for some t ∈ ∂Ω�
ρ. Indeed, B is equal to ρ on ∂Ω�

ρ and ρ is a regular value,

hence it follows from Proposition 4.3iii that ∂Ω�
ρ is contained in a finite union of

connected components of F(t), t ∈ ∂Ω�
ρ. On the other hand, if t ∈ ∂Ω�

ρ then, by

Proposition 4.3i, we obtain F ′(t) ⊂ ∂Ω�
ρ, which concludes the proof of our claim.

We may write

∂Ω�
ρ =

(
N0⋃
i=1

αi

)
∪

⎛
⎝N1⋃

j=1

γj

⎞
⎠ , N0, N1 ≥ 0, N0 +N1 ≥ 1,

where each αi is a trivial embedded copy of T and each γj is a nontrivial embedded
copy of T in the cylinder T× R.

We claim that we have either N1 = 0 or N1 = 2.
It is easy to see that if we had N1 � 3, then Ω�

ρ would be disconnected by one
of the intermediate curves γj , which is a contradiction.

Assume now that N1 = 1 and let γ1 be the nontrivial curve in ∂Ω�
ρ; we may

assume that γ1 = {t2 = c1}. We will prove that a contradiction occurs.
First we consider the case when Ω�

ρ lies below γ1. Let t̄ = (t̄1, t̄2) ∈ Ω�
ρ, with t̄

near γ1. Let V
.
= {t2 < c1}\

⋃N0

j=1 Γj , where Γj is the closed bounded region whose

boundary is αj . Take s = (s1, s2) ∈ V , s2 < t̄2 such that B(s) > ρ. Since V is
path-connected, there exists a path β entirely contained in V, connecting the points

t̄ ∈ Ω�
ρ and s ∈ V \ Ω�

ρ, which implies that β meets ∂Ω�
ρ, which is a contradiction.

Now we consider the case when Ω�
ρ lies above γ1 = {t2 = c1}. The proof is

similar. Take t̄ ∈ Ω�
ρ near γ1, that is, t̄ = (t̄1, t̄2), t̄2 > c1, t̄2 close to c1.

Let V
.
= {t2 > c1} \

⋃N0

j=1 Γj be as before. We know that the unique unbounded

connected component of the sublevel {B(t) < ρ} contains an upper half-cylinder.

Hence V contains a point s = (s1, s2) such that s 	∈ Ω�
ρ. Since t̄, s ∈ V and s 	= t̄,
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there exists a path β entirely contained in V connecting t̄ and s. But then β must
cross ∂Ω�

ρ, a contradiction. Hence N1 	= 1.
We have completed the proof of our claim, namely, that either N1 = 0 or N1 = 2.
In order to go on with the reduction to the model case, it is important to distin-

guish between two cases which we proceed to describe.

Case 1. There exists a connected component of a regular bounded sublevel (or
superlevel) such that N1 = 2, that is, its boundary has exactly two nontrivial
connected components of the level set of B in the cylinder.

Case 2. The boundary of every connected component of a bounded regular sublevel
or superlevel of B contains only trivial copies of the unit circle T.

We begin by dealing with Case 1.
We may assume that the nontrivial connected components of the level set ρ are

{t2 = c1} and {t2 = c2}, where c2 > c1.
Let t0 ∈ T× [c1, c2] be a point of global minimum of B on T× [c1, c2]; note that

t0 is a critical point of B, since the restriction of B to Ω�
ρ attains a global minimum

at a point of Ω�
ρ.

Let α : [0, 2π] → T × R be a smooth parametrization of {t2 = c2} such that
α′(s) 	= 0, s ∈ [0, 2π], and take 0 < s1 < s2 < 2π.

Since Ω�
ρ is a path-connected subset of the cylinder, we may replace α([s1, s2])

by an arc, called γ∗, which contains the points α(s1), t0 and α(s2), and lies in

Ω�
ρ, in such a way that the curve σ1

.
= α([0, s1]) ∪ γ∗ ∪ α([s2, 2π]) is a nontrivial

non-self-intersecting smooth curve in the cylinder.
We observe that for t = (t1, t2) ∈ T×R\Ω�

ρ near α([0, 2π]) with t2 > c2 we have

(4.4) B(t) > ρ.

We may assume that σ1 is T× {0}, t0 = (0, 0) and B(0, 0) = 0.
It follows from (4.4) that the global maximum of B on T × [0, 2π] occurs in

tmax ∈ T×(0, 2π) and we may consider another nontrivial smooth curve, σ2, without
self-intersection (for example, the graph of a function of t2) which contains the
points (0, 0), tmax and (0, 2π). We may assume that σ2 is {0} × T, finishing the
reduction to the model case in Case 1.

It remains to treat Case 2. We begin with a preliminary result.

Proposition 4.6. Assume that

(*): the boundary of every bounded regular sublevel or superlevel
of B contains only trivial copies of the unit circle T.

Then

i. every regular level set contains exactly one nontrivial copy of T;
ii. the nontrivial curve γ in (i) is part of the boundary of both the unique

unbounded connected component of superlevel and the unique unbounded
connected component of sublevel (with the same level r); the superlevel set
lies below γ and the sublevel set lies above γ;

iii. the boundary of each unbounded, regular sublevel or superlevel contains ex-
actly one nontrivial curve γ;

iv. if a normal curve γ lies below another normal curve γ′, then the value of B
over γ is strictly greater than the value of B over γ′; in particular, distinct
normal curves have distinct values of B.
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Proof. Proposition 4.3iv says that every regular level set contains at least one non-
trivial copy of T. Now if this copy were not unique, then the region bounded by
two consecutive nontrivial copies of T would contain a connected component of ei-
ther a sublevel or a superlevel, the boundary of which would contain both of these
nontrivial copies of T violating our assumption (*). This concludes the proof of i.

From Proposition 4.3 we know that γ has a foliated neighborhood and that γ is
contained in the boundary of a sublevel as well as in the boundary of a superlevel.
It follows from our assumption (*) that ii holds true.

Property iii is an immediate consequence of i and ii.
We now move on to the proof of iv. Let γr and γr′ be nontrivial connected

components of level sets, with levels r and r′, respectively, such that dB 	= 0 at
each point of the curves γr and γr′ .

Then γr is the nontrivial part of the boundary of the unbounded connected
component of superlevel, denoted by Ωu,r, and γ′

r is the nontrivial part of the

boundary of Ωu,r′ . We may assume that γr = {t2 = c} and γ′
r = {t2 = c′}.

Then c < c′ if and only if γr ⊂ Ωu,r′ if and only if Ωu,r ⊂ Ωu,r′ if and only if
{B(t) > r} ⊆ {B(t) > r′} if and only if r > r′. The proof is complete. �

Proposition 4.7. Assume that

(*): the boundary of every bounded regular sublevel or superlevel
of B contains only trivial copies of the unit circle T.

Assume that r is a regular value of B and that the superlevel set Ωr = {t ∈
T× R; B(t) > r} is disconnected.

Then there is a diffeomorphism of the three-dimensional torus such that
γ=̇{t2 = 0} is a normal curve which is the nontrivial part of the boundary of
the unique unbounded connected component of the superlevel Ωr, and, furthermore,
there is a point p ∈ T× (0, 2π) such that B(p) ≥ r.

Proof. We may assume that r = 0. We may also start from the situation where
the boundary of the unbounded connected component, U , of the superlevel
Ω0 .

= {t ∈ T × R; B(t) > 0} is already the normal curve γ=̇{t2 = 0}. What
we have to prove is that there is a point p ∈ {0 < t2 < 2π} such that B(p) ≥ 0.

Take V to be a bounded connected component of the superlevel Ω0. By as-
sumption (*) the boundary of V consists of a finite number of trivial copies of T.
Since γ is a normal curve, it has a neighborhood, W, foliated by nontrivial copies
of T. It follows that V cannot intersect any translate of W in the t2 direction by
numbers of the form 2kπ, k ∈ Z. We conclude that there is k ∈ Z such that
V ⊂ V̄ ⊂ {2kπ < t2 < 2(k + 1)π}.

If k = 0, then any point p in the boundary of V satisfies B(p) = 0.
If k > 0 and if p = (p1, p2) ∈ ∂V , then p′=̇(p1, p2 − 2kπ) ∈ {0 < t2 < 2π} and

B(p′) = −2kb20 > 0.
If k < 0 we use the change of variables (x, t) → (−x,−t) and fall back into one

of the previous two cases. The proof is complete. �

Proposition 4.8. Assume that γ
.
= {t2 = 0} is a normal curve, B is equal to 0

over γ and B has a critical point in T× (0, 2π). Consider the set W consisting of
all t ∈ T × (0, 2π) for which there is a normal curve α containing t and such that
the region bounded by γ and α is foliated by normal curves. Then there is a point
t0 ∈ ∂W such that dB(t0) = 0 and B(t0) < 0.
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Proof. Clearly, W is open, nonempty and connected. Also, dB(t) 	= 0, for all t ∈ W,
hence W is a proper subset of T× (0, 2π). We may write the boundary of W as a
disjoint union ∂W = γ ∪ K; we call K the upper part of ∂W. Then K is a compact
subset of a level set, with level < 0 because B is strictly decreasing as one moves
transversally to the normal curves in W , away from the initial curve γ. If we had
dB(t) 	= 0, for each t ∈ K, then K would be a normal curve contained in W, a
contradiction which ends the proof. �

Proposition 4.9. In the geometrical situation of the previous propositions, assume
that B satisfies B(t0) = 0 and B(p) > 0.

Define M by M
.
= maxt∈T×[0,2π] B(t); then M ≥ B(p) > 0. Let 0 < δ < 1 be

such that B(t) < M/2, for all t in the open disc D(t0; δ). Then there exists a
nontrivial smooth simple curve σ1 : T → T× R with σ1(0) = t0 satisfying

i. B(σ1(τ )) < M/2, τ ∈ T;
ii. the global maximum M of B on T×[0, 2π] will be attained in the upper

half-cylinder relatively to σ1.

Proof. Let F ′(s) be a normal curve such that F ′(s) ∩ D(t0, δ) 	= ∅, which can
be smoothly parametrized by γ : [0, 2π] → T × R such that γ(k)(0) = γ(k)(2π),
k = 0, 1, . . . .

By reparametrizing γ, if necessary, there exist τ1 < τ2 such that γ(τ1), γ(τ2) are
in ∂D(t0, δ) and γ(τ ) /∈ D(t0, δ) if either τ < τ1 or τ > τ2.

We now replace the arc γ((τ1, τ2)) by the juxtaposition of the segments [γ(τ1), t0]
and [t0, γ(τ2)] obtaining a nontrivial, continuous, piecewise smooth curve γ̃ passing
through t0. Furthermore, B(γ̃(τ )) < M

2 , τ ∈ R.
Finally, we smooth out γ̃ to obtain a curve σ1 as required. �

We are now finally ready to finish the reduction to the model case. We observe
that maxt∈T×[0,2π] B(t) = B(tmax), where tmax ∈ T × (0, 2π), in particular, the
maximum does not occur in T× {0}.

We take a nontrivial smooth simple curve, σ2 (for example, the graph of a func-
tion of t2) passing through the points t0, tmax and t0 + (0, 2π).

By making use of a smooth change of variables we may take σ1 to be t2 = 0 and
σ2 to be t1 = 0. This finishes the reduction to the model case in the remaining case
2.

5. Sufficiency

In this section we prove that L0 is globally solvable on T3 if all sublevels Ωr and
all superlevels Ωr of B are connected.

Using Remark 2.5 and the arguments in the beginning of the previous section,
it is enough to consider the case when b10 = 0 and b20 < 0.

Suppose, for the sake of reasoning, that there is a solution u ∈ D ′(T3) to L0u = f
for some f in the space E of Definition 2.3. Then, the x-Fourier coefficients of u
must satisfy the equation

(dt − nb(t)∧) û(t, n) = f̂(t, n), (t, n) ∈ T
2 × Z.

For each n ∈ Z, we lift this equation to T× R and proceed to analyze it.
Let t0 ∈ T× [0, 2π].
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For each n ∈ Z the general solution defined on T× R is given by

(5.1) û(t, n) =

∫ t

t0

ω(t, n) +Kne
nB(t),

where ω(t, n) is the exact 1-form

(5.2) ω(t, n)(τ )
.
= e−n[B(τ)−B(t)]f̂(τ, n), τ ∈ T× R,

and Kn is an arbitrary constant.
If n = 0, then

(5.3) û(t, 0) =

∫ t

t0

f̂(t, 0) +K0.

In fact, for n 	= 0, Kn must be chosen so that û(·, n) is a 2π-periodic function in
the variable t2; this yields a unique solution which may be written as

(5.4) û(γ±(s), n) =

∫ s

0

g(σ, n) dσ +
1

e∓nb20 − 1

∫ 2π

0

g(σ, n) dσ,

where g is the function

(5.5) g(σ, n) = e−n[B(γ±(σ))−B(γ±(s))]f̂(γ±(σ), n) · γ± ′(σ), σ ∈ [0, 2π],

and γ± : [0, 2π] → T×R are paths starting at a point t0 and ending at t0+(0,±2π),
respectively, whose projections on T2 are nontrivial smooth closed curves.

We will show that there are integration paths by means of which adequate esti-
mates for the behavior of these solutions can be proved, and from this we will be
able to obtain a true solution to the equation L0u = f.

5.1. Integration paths. The next results and proofs will show how the integration
paths are chosen; they are based on propositions 2.3, 2.4 and 2.9 from [6].

Proposition 5.1. In the commensurable case, assume that all sublevels and all
superlevels are connected. Then there is M > 0 such that, for all t0 ∈ T × [0, 2π]
and n ∈ Z, there exist smooth paths γ± = γ±(t0, n) joining the points t0 and
t0 + (0,±2π) with length |γ±| satisfying

|γ±| < M(1 + |n|), ∀n ∈ Z

and such that

i. B(τ ) � B(t) +
1

1 + |n| , for all τ ∈ γ+;

ii. B(τ ) � B(t)− 1

1 + |n| , for all τ ∈ γ−.

Proof. We will provide details only for the construction of the path γ+; similarly,
one can prove the results concerning γ−.

Let α = mint∈T×[0,2π] B(t) and β = 1 + maxt∈T×[0,2π] B(t) and consider the
compact interval J

.
= [α, β]. Then there exists ν > 0 such that T × (ν,∞) ⊂ Ωr

and T× (−∞,−ν) ⊂ Ωr for all r ∈ J.
Set Kr

.
= Ωr ∩ (T× [−ν, ν]). It is not difficult to prove that Kr is bounded and

path-connected.
For each j ∈ N, consider the collection of all squares contained in [0, 2π] × R

having side length 2π/2j and vertices in (2π/2j)Z2.
Since T × R is locally isometric to [0, 2π] × R the collection above induces a

collection Dj of sets, which we will continue to call squares, in T× R.
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For each t ∈ T× [0, 2π] and n ∈ Z, we have

r
.
= B(t) +

1

2(1 + |n|) ∈ J.

Consider the sets Ajr = {Q ∈ Dj ; Q ∩Kr 	= ∅} and Vjr =
⋃

Q∈Ajr
Q.

Observe that any point s ∈ Vjr is contained in a square Q ⊂ T×R with diagonal

equal to π
√
2/2j−1, which intersects Kr at a point s′, hence

B(s) � |B(s)−B(s′)|+B(s′) � ||b||∞|s− s′|+ r � ||b||∞
π
√
2

2j−1
+ r.

Now we take j ∈ N such that 2j−1 < 4π
√
2(1 + |n|)||b||∞ � 2j , and we have

B(s) � ||b||∞
π
√
2

2j−1
+ r � 1

2(1 + |n|) + r = B(t) +
1

1 + |n| , ∀s ∈ Vjr.

Kr is path-connected, hence so is Vjr, thus we can join the points t and t+(0, 2π)
by means of a path γ+ which is piecewise linear (in the sense that it is made up of
sides and diagonals of the squares above), is contained in Vjr, and intersects each
square in Vjr at most once.

If N is the number of squares in D0 intersecting Kr, then the number of squares
in Dj intersecting Kr is at most 4jN. Since the diagonal of each square in Vjr is

π
√
2/2j−1, we have

|γ+| � π
√
2

2j−1
4jN < (4π

√
2)2N ||b||∞(1 + |n|) = M(1 + |n|).

It is standard that γ+ can be replaced by a smooth path satisfying similar estimates.
�

5.2. Construction of the solution. For each f ∈ E, we will show that the equa-
tion L0u = f has a solution. In fact, we prove that the formal partial x-Fourier
series u(t, x) =

∑
û(t, n)einx, with coefficients given by (5.3) and (5.4), is a C∞

solution to this equation.

Lemma 5.2. For each pair (α, β) of nonnegative integers, with α+ β � 1 and for
each n 	= 0, we have

∂(α,β)

(∫ t

t0

ω(t, n)

)
= nα+β F(α,β)

(∫ t

t0

ω(t, n)

)
+ nα+β−1 G(α,β),

where

F(p,q)+ej =

{
bj if p+ q = 0,

bjF(p,q) +
1

n
∂jF(p,q) if p+ q � 1

and

G(p,q)+ej =

{
f̂j if p+ q = 0,

f̂j F(p,q) +
1

n
∂jG(p,q) if p+ q � 1.

Proof. Using the formula

∂j

(∫ t

t0

ω(t, n)

)
= nbj(t)

(∫ t

t0

ω(t, n)

)
+ f̂j(t, n)

and proceeding by induction on the order of differentiation, the lemma follows. �
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Observe that F(α,β) is bounded over T × R because F(α,β) depends only on the
derivatives of bj (of order less than α+β) and on nonpositive powers of n.Moreover,
G(α,β) is a finite sum, each summand being uniformly bounded, and depending on

the derivatives of bj and f̂j (of order less than α + β) and on nonpositive powers
of n. Thus, given (α, β) ∈ Z

2
+ and N > 0, we obtain a constant C(α,β) such that

|G(α,β)| � C(α,β) (1 + |n|)−N .

Lemma 5.3. Let t0 ∈ T× [0, 2π]. For every N ∈ N, there exists a constant C > 0
such that

(5.6)

∣∣∣∣
∫ t

t0

ω(t, n)

∣∣∣∣ � C

(1 + |n|)N
, ∀n ∈ Z,

where ω(t, n) was defined in (5.2) and t ∈ γ±, where γ± is one of the paths obtained
in Proposition 5.1 (this choice depends only on the sign of n).

Proof. For n < 0, by Proposition 5.1i we have e−n(B(τ)−B(t)) � e−n 1
1+|n| � e, hence∣∣∣∣

∫ t

t0

ω(t, n)

∣∣∣∣ � sup
τ∈γ+

∣∣∣e−n 1
1+|n| f̂(τ, n)

∣∣∣C(1 + |n|) � C(1 + |n|)−N .

If n > 0, we use Proposition 5.1ii and also obtain (5.6). The case n = 0 is
trivial. �

Definition 5.4. The operator L0 is globally solvable in the C∞ sense if, for each
f ∈ E, there exists a solution u ∈ C∞(T3) to the equation L

0u = f.

Proposition 5.5. Suppose that, for each r ∈ R, the sublevel Ωr and the superlevel
Ωr are connected. Then the operator L0 = dt + ib(t) ∧ ∂x is globally solvable in the
C∞ sense.

Proof. Since b20 < 0, there is a constant C0 > 0 such that

C−1
0 � | e∓nb20 − 1| � C0, ∀n ∈ Z, with ± n > 0.

Lemma 5.3 implies |û(γ±(s), 0)| � C and

|û(t, n)| �
∣∣∣∣
∫ t

t0

ω(t, n)

∣∣∣∣+ 1

|e∓nb20 − 1|

∣∣∣∣∣
∫ t0±(0,2π)

t0

ω(t, n)

∣∣∣∣∣
� C ′

(1 + |n|)N , for ± n > 0, respectively.

When α+ β � 1, Lemma 5.2 implies∣∣∣∂(α,β)û(t, n)
∣∣∣ � |n|α+β C(α,β),N

(1 + |n|)N+α+β
C ′

(α,β) + |n|α+β−1
C ′′

(α,β),N

(1 + |n|)N+α+β−1
,

thus, for each N > 0, there is a constant C > 0 such that,

|∂(α,β)û(t, n)| � C

(1 + |n|)N , ∀n 	= 0, t ∈ [0, 2π]2,

which implies that u ∈ C∞(T3). �

The proof of sufficiency in Theorem 2.4 is complete.
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