Cyclic operad formality for compactified moduli spaces of genus zero surfaces
Authors:
Jeffrey Giansiracusa and Paolo Salvatore
Journal:
Trans. Amer. Math. Soc. 364 (2012), 5881-5911
MSC (2010):
Primary 18D50; Secondary 55P48, 14H15, 81Q30, 81T45
DOI:
https://doi.org/10.1090/S0002-9947-2012-05553-X
Published electronically:
May 21, 2012
MathSciNet review:
2946936
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The framed little 2-discs operad is homotopy equivalent to the Kimura-Stasheff-Voronov cyclic operad of moduli spaces of genus zero stable curves with tangent rays at the marked points and nodes. We show that this cyclic operad is formal, meaning that its chains and its homology (the Batalin-Vilkovisky operad) are quasi-isomorphic cyclic operads. To prove this we introduce a new complex of graphs in which the differential is a combination of edge deletion and contraction, and we show that this complex resolves BV as a cyclic operad.
- V. I. Arnol′d, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227–231 (Russian). MR 242196
- Ryan Budney, The operad of framed discs is cyclic, J. Pure Appl. Algebra 212 (2008), no. 1, 193–196. MR 2355044, DOI https://doi.org/10.1016/j.jpaa.2007.05.011
- I. Gálvez-Carrillo, A. Tonks, and B. Vallette, Homotopy Batalin-Vilkovisky algebras. To appear in Journal of Noncommutative Geometry. arXiv:0907.2246.
- E. Getzler and J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces. arXiv:hep-th/9403055.
- E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265–285. MR 1256989
- E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, pp. 167–201. MR 1358617
- J. Giansiracusa and P. Salvatore, Formality of the framed little 2-discs and semidirect products. To appear in Proceedings of “Homotopy Theory of Function Spaces and Related Topics,” Oberwolfach, April 5-11, 2009.
- Jeffrey Giansiracusa, The framed little 2-discs operad and diffeomorphisms of handlebodies, J. Topol. 4 (2011), no. 4, 919–941. MR 2860346, DOI https://doi.org/10.1112/jtopol/jtr021
- F. Guillén Santos, V. Navarro, P. Pascual, and A. Roig, Moduli spaces and formal operads, Duke Math. J. 129 (2005), no. 2, 291–335. MR 2165544, DOI https://doi.org/10.1215/S0012-7094-05-12924-6
- Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233–279. MR 539532, DOI https://doi.org/10.1016/0001-8708%2879%2990043-4
- R. Hardt, P. Lambrechts, V. Turchin and I. Volic, Real homotopy theory of semi-algebraic sets. arXiv:0806.0476
- W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245–251. MR 624817
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI https://doi.org/10.1090/S0002-9947-1992-1034665-0
- Takashi Kimura, Jim Stasheff, and Alexander A. Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995), no. 1, 1–25. MR 1341693
- Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72. Moshé Flato (1937–1998). MR 1718044, DOI https://doi.org/10.1023/A%3A1007555725247
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI https://doi.org/10.1023/B%3AMATH.0000027508.00421.bf
- P. Lambrechts and I. Volic. Formality of the little $N$-disks operad. arXiv:0808.0457
- Pascal Lambrechts and Victor Turchin, Homotopy graph-complex for configuration and knot spaces, Trans. Amer. Math. Soc. 361 (2009), no. 1, 207–222. MR 2439404, DOI https://doi.org/10.1090/S0002-9947-08-04650-3
- Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 375–395. MR 1851264
- Paolo Salvatore and Nathalie Wahl, Framed discs operads and Batalin-Vilkovisky algebras, Q. J. Math. 54 (2003), no. 2, 213–231. MR 1989873, DOI https://doi.org/10.1093/qjmath/54.2.213
- Pavol Ševera, Formality of the chain operad of framed little disks, Lett. Math. Phys. 93 (2010), no. 1, 29–35. MR 2661521, DOI https://doi.org/10.1007/s11005-010-0399-z
- P. Severa and T. Willwacher, Equivalence of formalities of the little discs operad. arXiv:0905.1789
- Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004), no. 3, 391–428. MR 2099074, DOI https://doi.org/10.1007/s00029-004-0381-7
- Dmitry E. Tamarkin, Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1-2, 65–72. MR 2064592, DOI https://doi.org/10.1023/B%3AMATH.0000017651.12703.a1
- D. Tamarkin, Another proof of M. Kontsevich formality theorem. arXiv:math/9803025
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18D50, 55P48, 14H15, 81Q30, 81T45
Retrieve articles in all journals with MSC (2010): 18D50, 55P48, 14H15, 81Q30, 81T45
Additional Information
Jeffrey Giansiracusa
Affiliation:
Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom
Email:
j.h.giansiracusa@gmail.com
Paolo Salvatore
Affiliation:
Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Email:
salvator@mat.uniroma2.it
Keywords:
Cyclic operad,
framed little discs,
moduli of curves,
operad formality,
graph complex
Received by editor(s):
September 10, 2010
Received by editor(s) in revised form:
January 25, 2011
Published electronically:
May 21, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.