Discrete Morse theory for manifolds with boundary
HTML articles powered by AMS MathViewer
- by Bruno Benedetti PDF
- Trans. Amer. Math. Soc. 364 (2012), 6631-6670 Request permission
Abstract:
We introduce a version of discrete Morse theory specific for manifolds with boundary. The idea is to consider Morse functions for which all boundary cells are critical. We obtain “Relative Morse Inequalities” relating the homology of the manifold to the number of interior critical cells. We also derive a Ball Theorem, in analogy to Forman’s Sphere Theorem. The main corollaries of our work are:- For each $d \ge 3$ and for each $k \ge 0$, there is a PL $d$-sphere on which any discrete Morse function has more than $k$ critical $(d-1)$-cells. (This solves a problem by Chari.)
- For fixed $d$ and $k$, there are exponentially many combinatorial types of simplicial $d$-manifolds (counted with respect to the number of facets) that admit discrete Morse functions with at most $k$ critical interior $(d-1)$-cells. (This connects discrete Morse theory to enumerative combinatorics/ discrete quantum gravity.)
- The barycentric subdivision of any simplicial constructible $d$-ball is collapsible. (This “almost” solves a problem by Hachimori.)
- Every constructible ball collapses onto its boundary minus a facet. (This improves a result by the author and Ziegler.)
- Any $3$-ball with a knotted spanning edge cannot collapse onto its boundary minus a facet. (This strengthens a classical result by Bing and a recent result by the author and Ziegler.)
References
- Jan Ambjørn, Bergfinnur Durhuus, and Thordur Jonsson, Quantum geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997. A statistical field theory approach. MR 1465433, DOI 10.1017/CBO9780511524417
- Fredric D. Ancel and Craig R. Guilbault, Compact contractible $n$-manifolds have arc spines $(n\geq 5)$, Pacific J. Math. 168 (1995), no. 1, 1–10. MR 1331991
- E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543 (2002), 147–168. MR 1887881, DOI 10.1515/crll.2002.012
- B. Benedetti, On Locally Constructible Manifolds. PhD thesis, TU Berlin (2010). Available online at http://opus.kobv.de/tuberlin/volltexte/2010/2519/.
- Bruno Benedetti, Collapses, products and LC manifolds, J. Combin. Theory Ser. A 118 (2011), no. 2, 586–590. MR 2739505, DOI 10.1016/j.jcta.2010.05.001
- B. Benedetti, Discrete Morse theory is at least as perfect as Morse theory. Preprint (2010) at arxiv:1010.0548.
- B. Benedetti and F. H. Lutz, The dunce hat and a minimal non-extendably collapsible 3-ball. To appear in Electronic Geometry Models (2011). Preprint at arxiv:0912.3723.
- Bruno Benedetti and Günter M. Ziegler, On locally constructible spheres and balls, Acta Math. 206 (2011), no. 2, 205–243. MR 2810852, DOI 10.1007/s11511-011-0062-2
- R. H. Bing, Some aspects of the topology of $3$-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics, Vol. II, Wiley, New York, 1964, pp. 93–128. MR 0172254
- A. Björner, Topological methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, pp. 1819–1872. MR 1373690
- R. Bott, Morse Theory indomitable. In Raoul Bott: Collected Papers, R. D. MacPherson, ed., vol. 4: Mathematics related to Physics. Birkhäuser (1995), 465–480.
- H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197–205 (1972). MR 328944, DOI 10.7146/math.scand.a-11045
- S. Buoncristiano, Fragments of geometric topology from the Sixties. Vol. 6 of Geometry & Topology Monographs, Coventry (2003).
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- Manoj K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math. 217 (2000), no. 1-3, 101–113 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766262, DOI 10.1016/S0012-365X(99)00258-7
- D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra, Proc. Cambridge Philos. Soc. 63 (1967), 353–357. MR 210100, DOI 10.1017/s0305004100041268
- Matias Courdurier, On stars and links of shellable polytopal complexes, J. Combin. Theory Ser. A 113 (2006), no. 4, 692–697. MR 2216461, DOI 10.1016/j.jcta.2005.05.001
- Xun Dong, Alexander duality for projections of polytopes, Topology 41 (2002), no. 6, 1109–1121. MR 1923215, DOI 10.1016/S0040-9383(01)00037-4
- Bergfinnur Durhuus and Thórdur Jónsson, Remarks on the entropy of $3$-manifolds, Nuclear Phys. B 445 (1995), no. 1, 182–192. MR 1338102, DOI 10.1016/0550-3213(95)00207-9
- R. D. Edwards, The double suspension of a certain homology 3-sphere is $S^5$. Notices AMS 22 (1975), 334.
- Felix Effenberger and Wolfgang Kühnel, Hamiltonian submanifolds of regular polytopes, Discrete Comput. Geom. 43 (2010), no. 2, 242–262. MR 2579694, DOI 10.1007/s00454-009-9151-9
- Richard Ehrenborg and Masahiro Hachimori, Non-constructible complexes and the bridge index, European J. Combin. 22 (2001), no. 4, 475–489. MR 1829741, DOI 10.1006/eujc.2000.0477
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Alexander Engström, Discrete Morse functions from Fourier transforms, Experiment. Math. 18 (2009), no. 1, 45–53. MR 2548985
- Robin Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1, 90–145. MR 1612391, DOI 10.1006/aima.1997.1650
- Robin Forman, Witten-Morse theory for cell complexes, Topology 37 (1998), no. 5, 945–979. MR 1650414, DOI 10.1016/S0040-9383(97)00071-2
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- R. Furch, Zur Grundlegung der kombinatorischen Topologie. Abh. Math. Sem. Univ. Hamburg 3 (1924), 69–88.
- Richard E. Goodrick, Non-simplicially collapsible triangulations of $I^{n}$, Proc. Cambridge Philos. Soc. 64 (1968), 31–36. MR 220272, DOI 10.1017/s0305004100042511
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Martin A. Guest, Morse theory in the 1990s, Invitations to geometry and topology, Oxf. Grad. Texts Math., vol. 7, Oxford Univ. Press, Oxford, 2002, pp. 146–207. MR 1967749
- M. Hachimori, Combinatorics of constructible complexes. Ph.D. thesis, Tokyo University (2000).
- Masahiro Hachimori, Decompositions of two-dimensional simplicial complexes, Discrete Math. 308 (2008), no. 11, 2307–2312. MR 2404561, DOI 10.1016/j.disc.2006.10.023
- Masahiro Hachimori and Koya Shimokawa, Tangle sum and constructible spheres, J. Knot Theory Ramifications 13 (2004), no. 3, 373–383. MR 2061175, DOI 10.1142/S0218216504003214
- Masahiro Hachimori and Günter M. Ziegler, Decompositons of simplicial balls and spheres with knots consisting of few edges, Math. Z. 235 (2000), no. 1, 159–171. MR 1785077, DOI 10.1007/s002090000129
- Mary-Elizabeth Hamstrom and R. P. Jerrard, Collapsing a triangulation of a “knotted” cell, Proc. Amer. Math. Soc. 21 (1969), 327–331. MR 243510, DOI 10.1090/S0002-9939-1969-0243510-5
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- Gregor Jerše and Neža Mramor Kosta, Ascending and descending regions of a discrete Morse function, Comput. Geom. 42 (2009), no. 6-7, 639–651. MR 2519382, DOI 10.1016/j.comgeo.2008.11.001
- Michael Jöllenbeck and Volkmar Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc. 197 (2009), no. 923, vi+74. MR 2488864, DOI 10.1090/memo/0923
- Michael Joswig and Marc E. Pfetsch, Computing optimal Morse matchings, SIAM J. Discrete Math. 20 (2006), no. 1, 11–25. MR 2257241, DOI 10.1137/S0895480104445885
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- Dmitry Kozlov, Combinatorial algebraic topology, Algorithms and Computation in Mathematics, vol. 21, Springer, Berlin, 2008. MR 2361455, DOI 10.1007/978-3-540-71962-5
- Thomas Lewiner, Hélio Lopes, and Geovan Tavares, Optimal discrete Morse functions for 2-manifolds, Comput. Geom. 26 (2003), no. 3, 221–233. MR 2005300, DOI 10.1016/S0925-7721(03)00014-2
- W. B. R. Lickorish, An unsplittable triangulation, Michigan Math. J. 18 (1971), 203–204. MR 287551
- W. B. R. Lickorish, Unshellable triangulations of spheres, European J. Combin. 12 (1991), no. 6, 527–530. MR 1136394, DOI 10.1016/S0195-6698(13)80103-5
- W. B. R. Lickorish and J. M. Martin, Triangulations of the $3$-ball with knotted spanning $1$-simplexes and collapsible $r$th derived subdivisions, Trans. Amer. Math. Soc. 137 (1969), 451–458. MR 238288, DOI 10.1090/S0002-9947-1969-0238288-X
- F. H. Lutz, A vertex-minimal non-shellable simplicial 3-ball with 9 vertices and 18 facets. In http://www.eg-models.de, Electronic Geometry Model No. 2003.05.004.
- Frank H. Lutz, Small examples of nonconstructible simplicial balls and spheres, SIAM J. Discrete Math. 18 (2004), no. 1, 103–109. MR 2112491, DOI 10.1137/S0895480103430521
- Barry Mazur, A note on some contractible $4$-manifolds, Ann. of Math. (2) 73 (1961), 221–228. MR 125574, DOI 10.2307/1970288
- Ezra Miller and Victor Reiner, Reciprocal domains and Cohen-Macaulay $d$-complexes in $\Bbb R^d$, Electron. J. Combin. 11 (2004/06), no. 2, Note 1, 9. MR 2120111
- Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098
- John Milnor, On manifolds homeomorphic to the $7$-sphere, Ann. of Math. (2) 64 (1956), 399–405. MR 82103, DOI 10.2307/1969983
- John Milnor, Fifty years ago: topology of manifolds in the 50’s and 60’s, Low dimensional topology, IAS/Park City Math. Ser., vol. 15, Amer. Math. Soc., Providence, RI, 2009, pp. 9–20. MR 2503491, DOI 10.1090/pcms/015/02
- Marston Morse, Relations between the critical points of a real function of $n$ independent variables, Trans. Amer. Math. Soc. 27 (1925), no. 3, 345–396. MR 1501318, DOI 10.1090/S0002-9947-1925-1501318-X
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- M. Newman, A property of $2$-dimensional elements. Proc. Koninkl. Nederl. Akad. Wet. 29 (1926), 1401–1405.
- M. H. A. Newman, Boundaries of ULC sets in Euclidean $n$-space, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 193–196. MR 25731, DOI 10.1073/pnas.34.5.193
- U. Pachner, Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Univ. Hamburg 57 (1987), 69–86 (German). MR 927165, DOI 10.1007/BF02941601
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002) at arxiv:math/0211159.
- G. Perelman, Ricci flow with surgery on three-manifolds. Preprint (2003) at arxiv:math/0303109.
- T. M. Price, Compact, contractible $n$-manifolds and their boundaries, Michigan Math. J. 18 (1971), 331–341. MR 290378
- J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576–594. MR 593648, DOI 10.1287/moor.5.4.576
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
- Mary Ellen Rudin, An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. 64 (1958), 90–91. MR 97055, DOI 10.1090/S0002-9904-1958-10168-8
- V. V. Sharko, Functions on manifolds, Translations of Mathematical Monographs, vol. 131, American Mathematical Society, Providence, RI, 1993. Algebraic and topological aspects; Translated from the Russian by V. V. Minachin [V. V. Minakhin]. MR 1248167, DOI 10.1090/mmono/131
- John Shareshian, Discrete Morse theory for complexes of $2$-connected graphs, Topology 40 (2001), no. 4, 681–701. MR 1851558, DOI 10.1016/S0040-9383(99)00076-2
- Emil Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358 (2006), no. 1, 115–129. MR 2171225, DOI 10.1090/S0002-9947-05-04079-1
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI 10.2307/2372978
- Dean E. Smith, On the Cohen-Macaulay property in commutative algebra and simplicial topology, Pacific J. Math. 141 (1990), no. 1, 165–196. MR 1028269
- C. T. C. Wall, Geometrical connectivity. I, J. London Math. Soc. (2) 3 (1971), 597–604. MR 290387, DOI 10.1112/jlms/s2-3.4.597
- Volkmar Welker, Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999), no. 1-3, 243–255. MR 1710494, DOI 10.1016/S0012-365X(99)00049-7
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
- J. H. C. Whitehead, Simplicial spaces, nuclei and $m$-groups, Proc. Lond. Math. Soc. 45 (1939), 243–327.
- E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341–358. MR 156351, DOI 10.1016/0040-9383(63)90014-4
- E. C. Zeeman, Seminar on Combinatorial Topology. Institut des Hautes Études Scientifiques, Paris, 1966. Fascicule I (Exposés I – V).
- E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501–526. MR 160218, DOI 10.2307/1970538
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Additional Information
- Bruno Benedetti
- Affiliation: Institute of Mathematics, Freic Universität, Arnimallee 2, 14195 Berlin, Germany
- Address at time of publication: Department of Mathematics, Royal Institute of Technology (KTH), Lindstedtsvägen 25, 10044 Stockholm, Sweden
- Email: benedetti@math.fu-berlin.de, brunoben@kth.se
- Received by editor(s): August 10, 2010
- Received by editor(s) in revised form: April 28, 2011
- Published electronically: April 30, 2012
- © Copyright 2012 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 364 (2012), 6631-6670
- MSC (2010): Primary 57Q10, 57Q15, 05A16, 52B22, 57M25
- DOI: https://doi.org/10.1090/S0002-9947-2012-05614-5
- MathSciNet review: 2958950