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COFINALITY AND MEASURABILITY

OF THE FIRST THREE UNCOUNTABLE CARDINALS

ARTHUR W. APTER, STEPHEN C. JACKSON, AND BENEDIKT LÖWE

Abstract. This paper discusses models of set theory without the Axiom of
Choice. We investigate all possible patterns of the cofinality function and the
distribution of measurability on the first three uncountable cardinals. The
result relies heavily on a strengthening of an unpublished result of Kechris: we
prove (under AD) that there is a cardinal κ such that the triple (κ, κ+, κ++)
satisfies the strong polarized partition property.

1. Introduction

In ZFC, small cardinals such as ℵ1, ℵ2, and ℵ3 cannot be measurable, as mea-
surability implies strong inaccessibility; they cannot be singular either, as successor
cardinals are always regular. So, in ZFC, these three cardinals are non-measurable
regular cardinals. But both of the mentioned results use the Axiom of Choice, and
there are many known situations in set theory where these small cardinals are either
singular or measurable: in the Feferman-Lévy model, ℵ1 has countable cofinality
(cf. [Jec03, Example 15.57]), in the model constructed independently by Jech and
Takeuti, ℵ1 is measurable (cf. [Jec03, Theorem 21.16]), and in models of AD, both
ℵ1 and ℵ2 are measurable and cf(ℵ3) = ℵ2 (cf. [Kan94, Theorem 28.2, Theorem
28.6, and Corollary 28.8]). Simple adaptations of the Feferman-Lévy and Jech and
Takeuti arguments show that one can also make ℵ2 or ℵ3 singular or measurable,
but is it possible to control these properties simultaneously for the three cardinals
ℵ1, ℵ2 and ℵ3?

In this paper, we investigate all possible patterns of measurability and cofinality
for the three mentioned cardinals. Combinatorially, there are exactly 60 such pat-
terns of which 13 are impossible for trivial reasons (e.g., if ℵ1 is singular, then ℵ2

cannot have cofinality ℵ1). In this paper, we prove that the remaining 47 patterns
are all consistent relative to large cardinals.

Our 47 consistency results will be proved by reducing all cases to eight base
cases from which the other patterns can be obtained by standard methods. Three
of the base cases will be proved consistent by techniques from forcing, and five
of them will require the existence of a model of AD. In particular, we will be
using the existence of a polarized partition property under AD which generalizes an
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unpublished theorem of Kechris from the 1980s (cf. [AH86, p. 600]). This polarized
partition property is of independent interest and its proof will take up the larger
part of this paper.

We begin by giving some basic definitions and terminology (§§ 2.1 and 2.2). We
then present a proof of (a slightly stronger version of) Kechris’ result (§ 2.3) and
generalize it to higher exponents (§§ 2.4 and 2.5).

We then move towards our application of the polarized partition property. We
start by listing some basic tools for forcing in the ZF context, some of them using
both polarized and ordinary partition properties, in §§ 3.1 and 3.2. These tools
will allow us to reduce the 47 consistent patterns to eight base cases in § 3.3. In
§§ 3.4 and 3.5, we prove the consistency of all base cases. We use consequences
of the polarized partition property established in § 2.5 in our applications in § 3.5.
Finally, in § 4, we summarize upper and lower consistency strength bounds of all
60 patterns and discuss open questions.

Our notation is mostly standard. We will make frequent use of coding and
decoding maps on ω and ωω, especially in § 2. We fix a recursive bijection i �→ (i0, i1)
from ω to ω2 and its inverse function (i, j) �→ 〈i, j〉 (and similarly, for n-tuples).
For x ∈ ωω, we define (x)i(j) := x(〈i, j〉).

2. Polarized partition properties under determinacy

2.1. Definitions. Fix a strictly increasing triple (κ0, κ1, κ2) of cardinals and an
ordinal δ ≤ κ0. We say a function f : 3 × δ → On is a block function if κi−1 <
f(i, α) < κi for i ∈ 3 (and κ−1 := 0), and we say it is increasing if f(i, α) < f(i, β)
whenever α < β. We denote the set of increasing block functions by IBFδ. If
�H = (H0, H1, H2) is a triple such that Hi ⊆ κi (for i ∈ 3), we define a subset
F �H,δ ⊆ IBFδ by

f ∈ F �H,δ : ⇐⇒ for all α ∈ δ and i ∈ 3, we have f(i, α) ∈ Hi.

If P ⊆ IBFδ is a partition of all increasing block functions into two disjoint sets,

we call a triple �H δ-homogeneous for P if either F �H,δ ⊆ P or F �H,δ ∩ P = ∅.

For Ramsey-type partition properties, we also define the set IBF<δ :=
⋃

α<δ IBFα,

and for a partition P ⊆ IBF<δ, we say that a triple �H is <δ-homogeneous for P
if for all α < δ, either F �H,α ⊆ P or F �H,α ∩ P = ∅.

Definition 1. The polarized partition property

(κ0, κ1, κ2) → (κ0, κ1, κ2)
δ

is the statement that for every partition P , there is a δ-homogeneous triple �H with
|Hi| = κi. If δ = κ0, we call it the strong polarized partition property.1 The
Ramsey-type polarized partition property

(κ0, κ1, κ2) → (κ0, κ1, κ2)
<δ

is the statement that for every partition P , there is a <δ-homogeneous triple �H
with |Hi| = κi. Polarized partition-properties with pairs of cardinals instead of
triples are defined analogously.2

1Note that this terminology differs from that of [AHJ00].
2Note that as in [AHJ00, Definition 4.11], these definitions are equivalent to the partition

theoretic ones found in [AHJ00, Definition 4.1].
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As is the case for ordinary partition relations, the polarized partition property is
equivalent to a c.u.b. version. A block function f is said to be of uniform cofinal-
ity ω if there is a function g : 3×δ×ω → On such that f(i, α) = sup{g(i, α, n) ; n ∈
ω}, and g is strictly increasing in the last argument. We say that a block function f
is of the correct type if it is increasing, everywhere discontinuous, and of uniform
cofinality ω. We write CTFδ for the functions of the correct type. If P ⊆ CTFδ, we

call a triple �H δ-c.u.b.-homogeneous if either F �H,δ∩CTFδ ⊆ P or F �H,δ∩P = ∅.

Definition 2. We say (κ0, κ1, κ2)
c.u.b.−→ (κ0, κ1, κ2)

δ if for every partition P ⊆
CTFδ, there is a triple �C = (C0, C1, C2) such that Ci is a closed unbounded set in

κi (for i ∈ 3) and �C is δ-c.u.b.-homogeneous.

Fact 3. For any δ ≤ κ0 < κ1 < κ2, we have that (κ0, κ1, κ2)
c.u.b.−→ (κ0, κ1, κ1)

δ

implies (κ0, κ1, κ2) → (κ0, κ1, κ1)
δ. Also, (κ0, κ1, κ2) → (κ0, κ1, κ1)

ω·δ implies

(κ0, κ1, κ2)
c.u.b.−→ (κ0, κ1, κ1)

δ.

Proof. The easy argument can be found in [Jac08, Lemma 3.3]. �

2.2. The axiom of determinacy and Suslin cardinals. Let us recall some basic
definitions from descriptive set theory. By a boldface pointclass Γ we mean a
collection of sets of reals closed under continuous preimages. For a pointclass Γ we
let Γ̆ denote the dual pointclass Γ̆ := {A ; ωω\A ∈ Γ}. A pointclass Γ is called

selfdual if Γ = Γ̆, and non-selfdual otherwise. If Γ is non-selfdual, we can define
Δ := Γ∩Γ̆. We say that a non-selfdual pointclass Γ has the separation property
(in symbols: Sep(Γ)) if any two disjoint sets in Γ can be separated by a set in Δ.

In general, at most one of Γ and Γ̆ can have the separation property. In [Ste81b],
Steel proved that AD implies that one of the two does. From now on in this section,
we shall assume AD.

The class of pairs of non-selfdual pointclasses (Γ, Γ̆) (i.e., Γ 
= Γ̆) such that one
of them is closed under ∃ωω

has order type under the Wadge ordering

Θ := sup{α; there is a surjection from ωω onto α}.

We call these the Lévy pointclasses. Let (Γα, Γ̆α) be the αth such pair. If one of
them is not closed under ∀ωω

, the other one is. If this is the case, we let Σ1
α be the

one that isn’t. If both of them are closed under ∀ωω

, let Σ1
α be the one with the

separation property. As usual, Π1
α := (Σ1

α)̆ . In [KSS81, §4], the authors proposed
a classification of these pointclasses. They fall into four types of “projective-like
hierarchies” which are distinguished by the closure properties of the pointclass at
the base of the hierarchy (this is recalled after Proposition 6 below). For example,
if cf(α) = ω, then Σ1

α is at the base of a type I hierarchy. In this case, Σ1
α is the

collection of sets which can written as a countable union of sets each of which is in
Σ1

β for some β < α. These pointclasses play a particularly important role in the
arguments of §§ 2.3–2.5.

As usual, a set of reals A is called λ-Suslin if there is a tree T ⊆ (ω×λ)<ω such
that A = p[T ] := {x ; ∃y ∈ λω((x, y) ∈ [T ])}. We write S(λ) for the pointclass of
all λ-Suslin sets. These pointclasses are closed under ∃ωω

, and thus show up in our
list mentioned in the last paragraph. A cardinal κ is called a Suslin cardinal if
S(κ)\

⋃
λ<κ S(λ) 
= ∅.
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We give the well-known Kunen-Martin theorem (cf. [Kec78, Theorem 3.11]) with
its proof, as the general idea of this proof will be used repeatedly in our results of
§§2.3–2.5.
Theorem 4 (Kunen-Martin). Let ≺ be a κ-Suslin well-founded relation on ωω.
Then the rank of ≺ is less than κ+.

Proof. Let T be a tree on ω×ω×κ with ≺ = p[T ]. Let U be the well-founded tree
consisting of finite ≺-decreasing sequences (x0, . . . , xn), that is, xn ≺ · · · ≺ x1 ≺ x0.
It is easy to see that ≺ and U have the same rank. To each �x = (x0, . . . , xn) ∈ U ,
assign π(�x) = (x0�n+ 1, . . . , xn�n+ 1, 
(x1, x0)�n+1, . . . 
(xn, xn−1)�n+1), where

(y, z) ∈ κω is the leftmost branch of Ty,z. If �y extends �x, we view π(�y) as extending
π(�x) in a natural way. The map π is order-preserving from U into a well-founded
relation on a set in bijection with κ. Thus the rank of ≺ must be less than κ+. �

In [Ste83, Theorem 4.3], Steel identifies (assuming V = L(R)) the pointclasses
S(κ) in the list of Σ1

αs and Π1
αs and calculates their Suslin cardinals. For instance,

if κR is the least non-hyperprojective ordinal,3 we have S(κR) = Π1
κR = IND,

and κR is a Suslin cardinal as witnessed by the inductive sets. If V is an arbitrary
model of AD, then V contains L(R)V to which the Steel analysis applies. Moreover,

κ < ΘL(R)V is a Suslin cardinal in L(R)V if and only if κ is a Suslin cardinal in V .4

Proposition 5. If AD holds, then there are weakly inaccessible Suslin cardinals.

Proof. As just mentioned, Steel’s analysis of scales in L(R) shows that κR is a Suslin
cardinal in L(R), and thus in V . In [KKMW81, Theorem 3.1], the authors show
that it is in fact weakly Mahlo. Note that κR is by no means the only (or smallest)
weakly inaccessible Suslin cardinal (cf. [Ste81a, Theorem 3.1]). �

By the work of [KKMW81] mentioned in the proof of Proposition 5, the analysis
of the scale property of pointclasses is closely connected to partition properties.
Our results from §2.4 and §2.5 can be seen as an extension of this work. In the
following overview, we follow [Jac08, pp. 295–297]:

For a selfdual pointclass Δ, we let o(Δ) := sup{|A|W ; A ∈ Γ} and δ(Δ) :=
sup{α ; there is a Δ-prewellordering of length α}. Note that (under AD) if Δ is
closed under ∃ωω

and finite intersections, then o(Δ) = δ(Δ) [KSS81, Theorem
2.3.1]. Let us fix the increasing enumeration of all Suslin cardinals 〈κα ; α < Ξ〉.
Note that ZF + AD does not fix the value of Ξ: the Suslin cardinals could be
unbounded below Θ (in this case, every set has a scale and thus by a result of
Woodin [Kan94, Theorem 32.23], ADR holds) or there could be a largest Suslin
cardinal. It is enough for the results of this paper to consider the Suslin cardinals
in L(R), i.e., 〈κα ; α ≤ (δ21)

L(R)〉. Here [Ste83] gives a complete analysis of the
Suslin cardinals. We note though that the main partition result we prove in § 2.5
only uses AD.

We recall some facts about the classification of projective-like hierarchies and
how this pertains to Suslin cardinals. The facts we review below are sufficient for
the results of this paper. The reader can consult [Ste81a] and [Ste83] for more

3Here, IND is the pointclass of inductive sets, and the pointclass HYP := IND ∩ IND˘ is

the class of hyperprojective sets. All three mentioned pointclasses are closed under ∃ωω
and ∀ωω

,
and we have Sep(IND )̆.

4If κ is a Suslin cardinal of L(R)V , then the scale which witnesses a new Suslin representation
is trivially also in V . The other direction follows from the coding lemma.
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details. We note that the latter paper assumes V = L(R). Although we don’t need
it for the results of this paper, [Jac09] presents the theory of the Suslin cardinals
from just AD.

Following [Ste81a] consider

D := {o(Δ) ; Δ is selfdual and closed under ∧, ∃ωω}.

Clearly, D consists of limit ordinals and is closed unbounded in Θ. Each α ∈ D
corresponds to the base of a projective-like hierarchy. If cf(α) = ω, this is called a
type I hierarchy. In this case the Wadge degree of rank α is selfdual and consists of a
countable join of sets of lower Wadge rank. We let Σα

0 in this case be the collection
of countable unions of sets of Wadge rank below α. We let Πα

0 be the dual class,
and define Σα

n, Π
α
n for n > 0 as usual. This defines the projective-like hierarchy.

In this case, Σα
0 , Π

α
1 , etc. have the prewellordering property. These classes will

be particularly important for the arguments of §§2.3–2.5. If cf(α) > ω, the Wadge

pair (Γ, Γ̆) of rank α is non-selfdual. By [Ste81a], exactly one of Γ, Γ̆, say Γ̆, has
the separation property, and this class is closed under ∃ωω

. If this pointclass is
not also closed under ∀ωω

we are in type II if Γ is not closed under ∨ and in type
III if Γ is closed under ∨. We call Γ in these cases the Steel pointclass at the
base of the hierarchy. If Γ is closed under real quantification, then we are in type
IV (in this case the projective-like hierarchy is built up by applying quantifiers to

Γ∧ Γ̆). This analysis of the projective-like hierarchies does not depend on the scale
property and assumes just AD.

We now specialize to the Suslin cardinals and Suslin pointclasses. We say the
λth Suslin cardinal κλ is a limit Suslin cardinal if λ is a limit ordinal, and otherwise
a successor Suslin cardinal (so a successor Suslin cardinal may be a limit cardinal).
First we recall that [Ste83] shows that the Suslin cardinals form a closed set in L(R)
(which as we mentioned above has largest element (δ21)

L(R)). More generally, Steel
and Woodin have shown that the Suslin cardinals are closed below Θ assuming
AD+, and closed below their supremum assuming just AD. So we have:

Proposition 6. If λ is a limit ordinal, then κλ is a limit of Suslin cardinals.

If κ = κλ is a limit Suslin cardinal, then Δ :=
⋃

ρ<κ S(ρ) is selfdual and closed

under ∧, ∃ωω

, and so o(Δ) ∈ D. As discussed above, Δ sits at the base of a
projective-like hierarchy in one of four possible types. In [Ste83], Steel identifies
the pointclasses S(κ) among the Σ1

α and Π1
α and in fact determines the scaled

Lévy classes among the Σ1
α, Π

1
α (assuming V = L(R)). We recall some of the

consequences in terms of the possible hierarchy types. In all cases, κ = o(Δ) =
δ(Δ).

Type I: In this case cf(κ) = cf(λ) = ω. If we let, as above, Σα
0 (where

α = o(Δ) = κ) be the collection of countable unions of sets in Δ, then
Σα

0 , Π
α
1 , etc. have the scale property. κ+ is a Suslin cardinal, and a Πα

1

scale on a Πα
1 -complete set has norms of length κ+. We have S(κ) = Σα

1

and S(κ+) = Σα
2 .

Type II or III: In this case, let Γ be the Steel class defined above. So,
Δ = Γ ∩ Γ̆, and Γ is closed under ∧, ∀ωω

. Then S(κ) = ∃ωω

Γ, and
Scale(Γ), Scale(S(κ)) hold.
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Type IV: In this case, the pointclasses Γ, Γ̆ of Wadge degree κ are closed
under real quantification. Let Γ be such that Γ̆ has the separation prop-
erty. Then Scale(Γ) holds, and S(κ) = Γ.

If κ is a regular limit Suslin cardinal, then [Ste81a, Theorem 2.1] shows that
Γ (as in the above hierarchy descriptions) is closed under ∨. Thus, we are in
type III or IV. Finally, the analysis of [Ste83, Theorem 4.3] shows that a successor
Suslin cardinal is either a successor cardinal or has cofinality ω. Thus, a weakly
inaccessible Suslin cardinal κλ must be a limit Suslin cardinal (and so λ = κ).

Summarizing, our inaccessible Suslin cardinal κ is a limit of Suslin cardinals,
and S(κ) has the scale property. In fact, S(κ) = ∃ωω

Γ, where Γ is a non-selfdual
pointclass with o(Γ) = κ, Γ is closed under ∀ωω

, ∧, ∨, and Scale(Γ). It is possible
that Γ = S(κ) if we are in the case of a Type IV hierarchy. We again note that
these results can be obtained from just AD (cf. [Jac09]).

We fix a Γ-complete set P (which exists by Wadge’s Lemma for all non-selfdual
pointclasses under AD) and let {ϕn}n∈ω be a (regular) Γ-scale on P . An inspection
of the standard argument shows that we have the following boundedness condition
(as Γ is a boldface pointclass with the prewellordering property and closed under

∀ωω

and finite unions): any Δ = Γ∩ Γ̆ subset A of P is bounded in the codes, that
is, sup{ϕx(x) : n ∈ ω, x ∈ A} < κ.

Our results from §§2.4 and 2.5 have to be understood in the context of proofs of
partition properties for δ(Δ) for highly closed pointclasses. For instance, consider
the following example theorem as listed in [Jac08, Theorem 3.10]:

Theorem 7. Let Γ be non-selfdual, closed under ∀ωω

and finite unions, and with
the prewellordering property. Define Δ := Γ∩ Γ̆. If ∃ωω

Δ ⊆ Δ, then δ(Δ) has the
strong partition property.

Note that if κ is an inaccessible Suslin cardinal and Γ is the pointclass defined as
above, then Γ satisfies all of the requirements of Theorem 7, and therefore δ(Δ) = κ
has the strong partition property. Our results are extensions of this observation.

The fact that κ has the strong partition property immediately implies that the
ω-cofinal measure μ := Cω

κ on κ is a normal ultrafilter (cf. [Kle70, Theorem 2.1]).
Finally, we recall one more result, due to Martin (cf. [Kec78, Theorem 3.7]) in

the AD theory of pointclasses which will be used frequently later. For the sake of
completeness, we sketch the proof.

Theorem 8 (Martin). Let Γ be a non-selfdual pointclass closed under ∀ωω

, ∧, ∨,
and assume pwo(Γ). Let δ = δ(Δ) (where Δ = Γ ∩ Γ̆). Then Δ is closed under
unions and intersections of length < δ.

Proof. Assume the contrary, and let ρ < δ be least such that there exists some ρ
union, say A =

⋃
α<ρ Aα, of sets in Δ that is not in Δ. Easily, ρ is regular. We may

assume the Aα are strictly increasing. Since ρ < δ, there is a Δ-prewellordering
of length ρ. The coding lemma then shows that A ∈ Γ̆ (since Γ̆ is closed under

∃ωω

). By assumption, A ∈ Γ̆ − Δ. Define a norm ϕ of length ρ on A by ρ(x) =

least α such that x ∈ Aα. To see that ϕ is a Γ̆-norm, notice that the corresponding
norm relation <∗ can be written as x <∗ y ↔ ∃α < ρ (x ∈ Aα ∧ y /∈ Aα), a

ρ-union of Δ sets which is therefore in Γ̆. A similar computation works for ≤∗,
showing ϕ is a Γ̆-prewellordering on A. This shows that Γ̆ has the prewellordering
property since A is Γ̆-complete and so every Γ̆ set is a ρ-union of Δ sets. This is
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a contradiction since for pointclasses Γ0 closed under ∧, ∨ we have the chain of
implications pwo(Γ0) ⇒ Red(Γ0) ⇒ Sep(Γ̆0) and the separation property cannot
hold on both sides of a non-selfdual pointclass. �
2.3. Kechris’ Theorem. In this section, we shall prove Kechris’ theorem, an-
nounced in the 1980s, but not published. The proofs of our extensions of this
theorem in §§2.4 and 2.5 build on this proof and will use definitions from this
section.

Theorem 9. Assume AD and let κ be a weakly inaccessible Suslin cardinal. Then
for all ϑ < ω1 we have (κ, κ+, κ++) → (κ, κ+, κ++)ϑ.

Throughout this section, κ will be a weakly inaccessible Suslin cardinal (which
exists by Proposition 5). Note that by Fact 3 it doesn’t matter whether we are
using the standard or the c.u.b. version of the partition property, and we shall
freely switch between them.

Partition property proofs under AD always follow the same lines as developed
by Tony Martin (cf. [Kec78, Lemma 11.1] and [Jac09, Theorem 2.3.4]): to show
κ → κλ we must find a sufficiently good coding of the functions f : λ → κ. This
involves identifying a Lévy pointclass Γ and a coding map ϕ : ωω → P(λ× κ) with
certain coding relations being in Δ. In this paper we shall use Martin’s method
directly, so the reader need not be familiar with these general results.

In our setting, Γ is the (Steel) pointclass forming the lowest level of the projective-
like hierarchy containing S(κ). We have seen in §2.2 that this pointclass has the
required properties: S(κ) = ∃ωω

Γ has the scale property. The pointclass Γ (possi-
bly Γ = S(κ)) is scaled, non-selfdual, closed under ∀ωω

and finite intersections and
unions. We fixed a Γ-complete set P and a regular Γ-scale {ϕn}n∈ω on P which
allows boundedness arguments. In the following, P and ϕ will be used to code
ordinals less than κ. Since we also want to code higher ordinals, we shall have to
come up with a means of coding for these (in §2.3.2).

By μ, we denote the ω-cofinal measure on κ (which is an ultrafilter by Theorem
7). We shall show that [α �→ α+]μ = κ+ and that δ := [α �→ α++]μ = κ++.
The first claim can be proved directly (Lemma 14), after which we shall show the
following auxiliary theorem:

Theorem 10. (κ, κ+, δ) → (κ, κ+, δ)ϑ for all ϑ < ω1.

It follows immediately from Theorem 10 that δ → (δ)ϑ for all ϑ < ω1. In
particular, δ is regular. By showing that κ+ < δ ≤ κ++ (Claim 19), we establish
that δ = κ++, thus proving Theorem 9.

2.3.1. Countable unions of <α-Suslin sets. An ordinal α < κ is called �ϕ-strongly
reliable if for all β < α, we have sup{ϕn(x) ; n ∈ ω ∧ ϕ0(x) ≤ β} < α. Let
C ⊆ κ be a c.u.b. set contained in the �ϕ-strongly reliable ordinals. Without loss of
generality, we may assume that C is contained in the Suslin cardinals. The relation
R(x, y) ↔ x, y ∈ P ∧ϕ0(x) ≤ ϕ0(y) is in Γ, and so admits a Γ-scale �σ (with norms
into κ). By boundedness, we may assume C has the property that for all α ∈ C
and β < α, if R(x, y) and ϕ0(x) ≤ ϕ0(y) ≤ β, then supn σn(x, y) < α. Let Cω

denote the elements of C of cofinality ω.
As in §2.2, for α ∈ Cω, let Σ

α
0 denote the pointclass of countable unions of sets

which are in
⋃
{S(β) ; β < α}. Thus, Scale(Σα

0 ) holds. Define Σα
n, Π

α
n from Σα

0

as usual. Then Scale(Πα
1 ) holds, and Σα

1 is the pointclass of α-Suslin sets. From
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the Coding Lemma and the Kunen-Martin Theorem 4 it follows that α+ is the
supremum of the lengths of the Σα

1 prewellorderings, and is the supremum of the
lengths of the Σα

1 well-founded relations. In particular, α+ is regular.
The pointclass Σα

1 behaves sufficiently similar to Σ1
1 to allow proving the follow-

ing result (by essentially the same argument as is used in the countable partition
property of ℵ1; cf. [Kec78, Theorem 11.2]):

Theorem 11. For all ϑ < ω1, we have α+ → (α+)ϑ.

Applying [Kle70, Theorem 2.1] again, we get that the ω-cofinal normal measure
μα := Cω

α+ on α+ is an ultrafilter. We shall use this measure in Lemma 18 and its
proof.

As we shall need to do arguments about α uniformly, we check in the next result
that the assignment of scales and universal sets is uniform:

Lemma 12. There is a function α �→ (Aα, �ρα) which assigns to each α ∈ Cω a
universal Σα

0 set Aα and a Σα
0 scale �ρα = {ραn}n∈ω on Aα with norms into α.

Furthermore, there is a function α �→ (Bα, V α) which assigns to such an α a
universal Σα

1 set Bα and a tree V α on ω × α with Bα = p[V α]. Finally, there

is a function α �→ (Qα, �ψα) which assigns to such an α a universal Πα
1 set and a

Πα
1 -scale

�ψ on Qα.

Proof. For α ∈ Cω, let Rα = {〈x, y〉 ; x, y ∈ P ∧ ϕ0(x) ≤ ϕ0(y) < α}. From the
definition of C, Rα can be written as an α union of sets each of which is <α-Suslin.
Thus, Rα ∈ Σα

0 . Since R
α is a prewellordering of length α, it cannot be <α-Suslin.

Define Aα = {〈τ, z〉 ; ∃n((τ (z))n ∈ Rα)}, where we view every real τ as a strategy
for player II in an integer game in some standard manner, and τ (z) is the result of
applying τ to z. Clearly Aα ∈ Σα

0 . Moreover, since Rα has Wadge degree at least
α, it follows easily that Aα is Σα

0 -universal. We define, uniformly in α, a tree Uα

with Aα = p[Uα]. Define (s, (α0, . . . , αn)) ∈ Uα if and only if

(i) α0 > max{α1, . . . , αm}, and α0 < α.
(ii) α1 ∈ ω.
(iii) There is a 〈τ, z〉 ∈ ωω extending s such that if (τ (z))α1

= 〈x, y〉, then
σi(x, y) = αi+2 for all i ≤ n− 2 (�σ is the scale on R as above).

From the closure properties of C it follows that Aα = p[Uα]. Then let {ρ̄αn}
be the semi-scale derived from the Suslin representation Uα, and let {ραn} be the
corresponding scale. Since each ρ̄αn maps into α, so does ραn, using property (i)
in the definition of Uα. [In passing from the semi-scale to the scale we can take
ραn(w) = |(ρ̄α0 (w), . . . , ρ̄αn(w))|≺, where ≺ is lexicographic ordering on the set of n+1
tuples satisfying (i).] To see that �ρα is a Σα

0 -scale, it is enough to show that the
semi-scale {ρ̄αn} is a Σα

0 semi-scale, since Σα
0 is closed under ∧,∨. However, each

of the norm relations <∗
n, ≤∗

n corresponding to the norm ρ̄αn can be written as an α
union of <α-Suslin sets. For example, for <∗

0 we have: z <∗
0 w if and only if there

is a β < α such that (Uα�β)z is ill-founded and (Uα�β)w is well-founded. Since
Uα�β and its complement are <α-Suslin (since α is a limit of Suslin cardinals), the
claim follows.

Define Bα by Bα(〈τ, z〉) if and only if there is a w such that for all n, we have
Rα(τ (z, w, n)). Since Σα

1 is closed under ∃ωω

and countable unions and intersec-
tions, Bα ∈ Σα

1 . Since Rα has Wadge degree at least α, it is easy to check that Bα

is universal for Σα
1 . The tree U

α projecting to Aα easily gives a tree V α projecting
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to Bα (as in the proof that Suslin representations are closed under ∃ωω

and ∀ω).
Finally, we can define Qα by Qα(w) if and only if for all z, we have Aα(〈w, z〉), and
use periodicity to transfer the Σα

0 scale on Aα to a Πα
1 scale on Qα. �

2.3.2. Coding of ordinals below κ, κ+ and δ. The coding of elements of κ is com-
pletely standard: A real x will code an ordinal below κ if and only if x ∈ P . In this
case, x codes the ordinal |x| = ϕ0(x). We let P0 = P be the set of codes of ordinals
below κ.

In order to code ordinals less than κ+, we need a tree T+ on ω × κ which we
shall use in our coding of the ordinals. For the definition of T+, we need a number
of auxiliary objects: W , T2, and U .

Let W = {w ∈ ωω ; ∀n (w)n ∈ P}. Define the norm ψ on W by ψ(w) =
sup{ϕ0((w)n) ; n ∈ ω}. It is easy to see that ψ is a Γ-norm on the set W ∈ Γ. If
we define a tree T2 on ω × κ by (s, (α0, . . . , αn)) ∈ T2 if and only if there is a w
extending s such that

w ∈ W and for all i ≤ n, we have (ϕi0((w)i1) = αi),

then p[T2] = W . For α ∈ C with cf(α) = ω we also have that p[T2�α] = Wα :=
{w ∈ W ; ψ(w) ≤ α}.

Furthermore, we define a tree U on (ω)4×κ×κ as follows (we recycle the notation
here; U has nothing to do with the trees Uα above). As a motivation, it is helpful
to think of the first two coordinates of U in the definition that follows as defining

reals x, y with x ∈ W and y defining a Σ
ψ(x)
1 relation via the universal set Bψ(x)

from Lemma 12. Define (s, t, u, v, �α, �β) ∈ U if and only if there are x, y, z, w ∈ ωω

extending s, t, u, v such that:

(i) z codes the reals z0, z1, . . . , w codes w0, w1, . . . , and for each i, n ∈ ω the
subsequence γj = α〈i,n,j〉 of the �α satisfies the following. View y as coding
a Lipschitz integer strategy for player II, and set ri = 〈y(〈zi, zi+1〉), wi〉.
Let b = (ri)n. Then (b,�γ) ∈ [T�σ], where T�σ is the tree of the scale �σ on R.

(ii) For each i, n ∈ ω we have (using the notation immediately above) if δj =

β〈i,n,j〉, then δ0 ∈ ω and (〈(b)1, xδ0〉, �δ′) ∈ [T�σ], where �δ
′ = (δ1, δ2, . . . ).

Let us explain the idea behind the definition of U : the objects w, �α, �β are

attempting to witness that the z0, z1, . . . form a decreasing sequence in the Σ
ψ(x)
1

relation coded by y, as in the proof of the Kunen-Martin Theorem 4. The relation
coded by y is the set of (c, d) such that there is a w such that for all n, we have
〈y(〈c, d〉), w〉n = (e, f) ∈ Rψ(x) (where R is as in the proof of Lemma 12). The

ordinals �β witness that the various f reals satisfy ϕ0(f) < ϕ0((x)n) for some n,
and so (e, f) ∈ Rψ(x).

Lemma 13. Suppose that x ∈ W , ψ(x) ∈ C, and y codes a well-founded relation

A in Σ
ψ(x)
1 . Then Ux,y is well-founded. Furthermore, |Ux,y�ψ(x)| ≥ |A|.

Proof. If (z, w, �α, �β) ∈ [Ux,y], then for each i, A(zi, zi+1), where A is the Σ
ψ(x)
1

relation coded by y: A(c, d) if and only if there is a w such that for all n, we have

〈y(〈c, d〉), w〉n = (e, f) ∈ Rψ(x). The �β witness that the various (e, f) are in Rψ(x).
So, as in the Kunen-Martin Theorem 4, this produces an infinite decreasing chain
through A, a contradiction.

For any c, d such that A(c, d), we can find a w such that for all n, if 〈y(〈c, d〉), w〉n
= (e, f), then supj σj(e, f) < ψ(x) and supj σj(f, xk) < ψ(x) for any k such that
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ϕ0(xk) > ϕ0(f). This follows from the closure properties of C and the fact that
ψ(x) ∈ C. The proof of the Kunen-Martin Theorem 4 then shows that Ux,y�ψ(x)
has rank at least |A|. �

We note that it is important for the following argument that for x, y as in
the statement of Lemma 13 that the entire tree Ux,y is well-founded (not just
Ux,y�ψ(x)).

Finally, we can now define the tree T+ on (ω)2 × κ × (ω)4 × κ × κ such that

(a, b,�γ, s, t, u, v, �α, �β) ∈ T+ if and only if (b,�γ) ∈ T2, (s, t, u, v, �α, �β) ∈ U , and there
are σ, r, x, y extending a, b, s, t, respectively, such that σ(r) = 〈x, y〉. We may
identify T+ with a tree on ω × κ by identifying the last coordinates with a single
coordinate (i.e., taking a reasonable bijection between ω×κ× (ω)4 × κ×κ and κ).
We furthermore fix a reasonable bijection between κ and κ<ω. We assume (without
loss of generality) that our c.u.b. set C is closed under both of these bijections.

Coding ordinals below κ+. A code for an ordinal below κ+ will be a pair (x, σ)
where x ∈ P and thus codes an ordinal |x| = ϕ0(x) below κ, and σ ∈ ωω such that
T+
σ is well-founded. Using our bijection between κ and κ<ω, we can ask for the

rank of an ordinal ξ < κ in the tree T+
σ ; we write |T+

σ (ξ)| for this. Given a pair
(x, σ), we now consider the map f : κ → κ defined by α �→ |(T+

σ �α)(|x|)|. Using the
ω-cofinal normal measure μ := Cω

κ on κ, we now define |(x, σ)| := [f ]μ. We let P1

be the set of codes of ordinals below κ+. The next lemma shows that this works.

Lemma 14. {|(x, σ)| ; (x, σ) ∈ P1} = κ+. Also, κ+ = [α �→ α+]μ.

Proof. Suppose (x, σ) ∈ P1, and let f = fx,σ be given by f(α) = |T+
σ �α(|x|)| for

all α > |x|. If g : κ → κ is such that ∀∗μα g(α) < f(α), then ∀∗μα ∃β < α g(α) =

|T+
σ �α(β)|. By normality of μ we may fix β < κ, and fix x′ ∈ P0 coding β, such

that ∀∗μα g(α) = |(T+
σ �α)(|x′|)|. So, [g]μ = |(x′, σ)|. So, the ordinals coded by

P1 form an initial segment of the ordinals. This argument also shows that there
is a map from κ = [α �→ α]μ onto |(x, σ)|, namely β �→ [α �→ |T+

σ �α(β)|]μ. So,
{|(x, σ)| ; (x, σ) ∈ P1} ≤ κ+.

If ≺ is a wellorder of κ, let f≺ be given by f≺(α) = |≺�α| < α+. If |≺| = |≺′|,
then there is a c.u.b. subset of κ on which f≺ and f≺′ agree. Also, if |≺| < |≺′|,
then there is a c.u.b. set on which f≺(α) < f≺′(α). This gives an order-preserving
map from κ+ into [α �→ α+]μ. So, [α �→ α+]μ ≥ κ+.

Suppose γ = [f ]μ, where f(α) < α+ for all α < κ. Consider the following game
Gf :

Player I r(0) r(1) r(2) ...
Player II x(0) x(1) x(2) ...

y(0) y(1) y(2) ...

where player I plays out a real r ∈ ωω and player II plays out reals x, y. We
interpret the real r as coding countably many reals {(r)i ; i ∈ ω} and x as coding
{(x)i ; i ∈ ω}. Let i be least, if it exists, such that (r)i /∈ P0 or (x)i /∈ P0. Player I
loses if ri /∈ P0. Assume then that (r)i, (x)i ∈ P0 for all i. Thus, x ∈ W . Recall
ψ(x) = supi |(x)i|. Player II then wins if and only if ψ(x) ≥ ψ(r) and y codes a

Σ
ψ(x)
1 well-founded relation Ay of rank > f(ψ(x)).
Player I cannot have a winning strategy σ, for suppose σ were winning for

player I. Note that {(r)0 ; r ∈ σ[ωω × ωω]} ⊆ P0. By boundedness, let α0 ∈ C be
such that α0 > sup{|(r)0| ; r ∈ σ[ωω × ωω]}. Fix a real x0 ∈ P0 with |x0| = α0.
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Note then that {r1 ; r ∈ σ[{(x, y) ; (x)0 = x0} ⊆ P0. By boundedness, fix α1 > α0

in C with α1 > sup{|(r)1| ; r ∈ σ[{(x, y) ; (x)0 = x0}. Continuing, we define αi and
xi for all i. Let x ∈ ωω be the real with (x)i = xi for all i. Let α = supi αi. Clearly,
α ∈ C. By the coding lemma, there is a Σα

1 well-founded relation, say coded by
the real y, of length greater than f(α). If player II plays x and y, then player II
defeats σ, a contradiction.

Now let σ be a winning strategy for player II in Gf . First note that T+
σ is well-

founded, for a branch (r,�γ, x, y, z, w, �α, �β) ∈ [T+
σ ] would give r ∈ W (witnessed by

�γ) and so x ∈ W and ψ(x) ≥ ψ(r) as σ(r) = 〈x, y〉 and σ is winning for player II.

Also, y codes a Σ
ψ(x)
1 well-founded relation Ay of rank at least f(ψ(x)). z would

however give a decreasing chain in Ay, a contradiction. Next note that there is a
c.u.b. D ⊆ κ such for all α ∈ D and r ∈ W with ψ(r) = α, if σ(r) = 〈x, y〉, then
ψ(x) = ψ(r). This follows by a boundedness argument similar to the above. We
may assume D ⊆ C. For α ∈ D with cf(α) = ω, let r ∈ W with ψ(r) = α. If
σ(r) = 〈x, y〉, then w ∈ W and ψ(x) = ψ(r) = α. Thus, y codes a Σα

1 well-founded
relation Ay of rank at least f(α). From Lemma 13 it follows that |T+

σ �α| > f(α).
So, [f ]μ ≤ [α �→ |T+

σ �α|]μ. It follows that for some x ∈ P that [f ]μ = |(x, σ)|. So,
[α �→ α+]μ ≤ {|(x, σ)| ; (x, σ) ∈ P1} ≤ κ+. �

Coding ordinals below δ. We use a variation T++ of the tree T+ above. The
tree T++ will be defined exactly as T+ except we use a tree U ′ in place of U . In
order to define U ′, we need an auxiliary tree V2. In Lemma 16, we shall construct
a tree V which is then refined to V2 in Lemma 17.

First, recall from Lemma 12 that there is a function α �→ (Qα, �ψα), for α ∈ Cω,

where Qα is a universal Πα
1 set, and �ψα is a (regular) Πα

1 -scale on Qα. Note that
the norms ψα

n map into α+, since α+ is the supremum of the lengths of the Σα
1

well-founded relations.
We need the following technical lemma.

Lemma 15. There is a continuous function c : ωω × ωω → ωω such that for all
x ∈ W , β ≥ ψ(x), and y ∈ ωω we have that c(x, y) ∈ Qβ if and only if there is no
z such that for all n, we have Bψ(x)(〈y, 〈zn, zn+1〉〉). Here, Bψ(x) and Qβ are as in
Lemma 12.

Proof. Let E(x, y) if and only if there is no z such that for all i, we have Bψ(x)(〈y, 〈zi,
zi+1〉〉). Then:

E(x, y) ↔ ¬∃z ∀i ∃w ∀n Rψ(x)(y(〈zi, zi+1〉, w, n))
↔ ¬∃u ∀m Rψ(x)(y(〈(u0)m0

, (u0)m0+1〉, (u1)m0
,m1))

↔ ¬∃〈u, v〉 ∀m (R(a, b) ∧R(b, xv(m))),

where

a = a(y, u,m) = (y(〈(u0)m0
, (u0)m0+1〉, (u1)m0

,m1))0,

b = b(y, u,m) = (y(〈(u0)m0
, (u0)m0+1〉, (u1)m0

,m1))1.
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Here we use the fact that (for all j) R(a, b)∧R(b, xj) holds if and only if Rψ(x)(a, b)∧
Rψ(x)(b, xj) if and only if Rβ(a, b) ∧Rβ(b, xj). We therefore have

E(x, y) ↔ ¬∃t = 〈u, v〉 ∀m (Rβ(a, b) ∧Rβ(b, xv(m)))

↔ ¬∃t ∀m Rβ(c0(x, y)(c1(x, y), t,m))

↔ Qβ(c(x, y)),

where c(x, y) = 〈c0(x, y), c1(x, y)〉 and c0, c1 are continuous functions such that
c0(x, y) is a strategy for player II satisfying c0(x, y)(c1(x, y), t,m) = 〈a(y, u, m2 ),
b(y, u, m

2 )〉 if m is even and c0(x, y)(c1(x, y), t,m) = 〈b(y, u, m−1
2 ), xv(m)〉 if m is

odd. We may take c1(x, y) = 〈x, y〉, and then easily get a continuous c0 satisfying
this equation. �

Lemma 16. There is a tree V on ω × ω × κ × κ such that (x, y) ∈ p[V ] if and

only if x ∈ W and y codes a Σ
ψ(x)
1 well-founded relation. Furthermore, if x ∈ W ,

ψ(x) ∈ C, and y codes a well-founded Σ
ψ(x)
1 relation, then there is a β < ψ(x)+

such that Vx,y�β is ill-founded. In fact, for any α ∈ C with cf(α) = ω, and any
A ∈ Σα

1 consisting of pairs (x, y) such that x ∈ W , ψ(x) ≤ α, and y codes a

well-founded Σ
ψ(x)
1 relation, there is a β < α+ such that A ⊆ p[V �β].

Proof. Define (s, t, �α, �β) ∈ V if and only if

(i) β0 ∈ C and β0 > max{�α, �β}.
(ii) (s, �α) ∈ T2.

(iii) There are x, y extending s, t such that βi = ψβ0

i (c(x, y)) for 1 ≤ i < lh(s),

where {ψβ0

i } is the scale on Qβ0 from Lemma 12 and c is the continuous
function of Lemma 15.

It is clear that V has the desired properties from Lemma 15. For the last property
claimed, we use the fact that {ψα

i } is a Πα
1 -scale, and so every Σα

1 subset of Qα is
bounded in these norms. �

The next lemma is a small variation of the previous one, allowing y to code
countably many well-founded relations instead of just one.

Lemma 17. There is a tree V2 on ω×ω×κ×κ such that (x, y) ∈ p[V ] if and only

if x ∈ W and for all n, (y)n codes a Σ
ψ(x)
1 well-founded relation. Furthermore, for

each α ∈ C with cf(α) = ω there is a c.u.b. D ⊆ α+ such that for all γ ∈ D, all
x ∈ W with ψ(x) ≤ α, and all y such that for all n, |Ux,(y)n�α| < γ, we have that
(V2)x,y�γ is ill-founded.

Proof. The tree V2 is constructed as V except that in (iii) we require that βi =

ψβ0

i0
(c(x, (y)i1)). Given α ∈ C with cf(α) = ω, define D ⊆ α+ as follows. For

β < α+, let Bα,β = {(x, y) ; x ∈ W ∧ ψ(x) ≤ α ∧ ∀n |Ux,(y)n�α| ≤ β}.5 Since

Δα
1 is closed under <α+ unions and intersections (by Theorem 8), it follows that

Bα,β ∈ Δα
1 . Let g(α, β) = sup{ψα

n(c(x, y)) ; (x, y) ∈ Bα,β} < α+ by boundedness,
as in Lemma 16. Let D be the c.u.b. sets of points below α+ which are closed under
g. �

5Using the set B∗
α,β = {(x, y) ; x ∈ W ∧ ψ(x) ≤ α ∧ ∀n (y)n codes a Σα

1 well-founded relation

of length ≤ β} might seem more natural, but it is not clear that this definies a Σα
1 set.
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We define (s, t, u, �α, �β, v, a, b, �γ, �δ) ∈ U ′ if and only if there are x, τ, w, y, z, w
extending s, t, u, v, a, b, respectively, such that

(i) (s, u, �α, �β) ∈ V2.
(ii) τ (w) = y.

(iii) (s, v, a, b, �γ, �δ) ∈ U . Here U is as in Lemma 13.

We now define the tree T++ on ω2 × κ× ω3 × κ2 × ω3 × κ2 consisting of tuples

(c, d, �η, s, t, u, �α, �β, v, a, b, �γ, �δ) such that there are σ, r, x, τ extending c, d, s, t such
that:

(i) σ(r) = 〈x, τ 〉.
(ii) (d, �η) ∈ T2.

(iii) (s, t, u, �α, �β, v, a, b, �γ, �δ) ∈ U ′.

Let us explain the definition of T++: The first coordinate of the tree T++ pro-
duces a strategy σ. We intend for σ to be a strategy such that when player I
plays r ∈ W , then σ(r) = 〈x, τ 〉, where x ∈ W and ψ(x) ≥ ψ(r). The object τ
is also a strategy which we intend to do the following. If player I plays a w such

that for all n, (w)n codes a Σ
ψ(x)
1 well-founded relation (so w codes the ordinal

supn{|Ux,(w)n�ψ(x)|}), then τ (w) = y codes a well-founded relation in Σ
ψ(x)
1 . Fi-

nally, T++ attempts to produce an infinite decreasing chain in the relation coded
by y, as in the Kunen-Martin Theorem 4.

For the following result, remember that μα is the ω-cofinal measure on α+ which
exists by Theorem 11.

Lemma 18. For all α ∈ Cω, we have jμα
(α+) = α++.

Proof. The proof follows by a Kunen tree argument, as in the proof for the odd
projective ordinals. It is also a special case of the argument given below. Briefly,

define the tree K on ω2 × α+ × ω3 × α2 by: (s, t, �α, u, v, w, �β,�γ) ∈ K if and only
if there are τ , w, and y extending s, t, u such that τ (w) = y, (t, �α) ∈ V̄ , and

(t, u, v, w, �β,�γ) ∈ U . Here V̄ is a tree such that p[V̄ ] is the set of w such that for all
n, (w)n codes a Σα

1 well-founded relation, and there is a c.u.b. D ⊆ α+ such that
for all β ∈ D there is a w ∈ p[V̄ �β] such that for all n, (w)n has rank |(w)n| < β
and supn |(w)n| = β.6

If F : α+ → α+, consider the game where player I plays out w, player II plays out
y, and player II wins if and only if whenever for all n, (w)n codes a Σα

1 well-founded
relation. Then y codes a Σα

1 well-founded relation of length > f(|w|), where |w| is
the supremum of the lengths of the relations coded by the (w)n. By boundedness,
player II has a winning strategy σ for the game. For any β ∈ D with cf(β) = ω we
have f(β) < |V̄σ�β|. This shows [f ]μα

< α+, and so jμα
(α+) ≤ α++. The lower

bound follows from the embedding argument given earlier (the second paragraph
of the proof of Lemma 14). �

Claim 19. [α �→ α++]μ ≤ κ++.

6Take any x ∈ W with ψ(x) = α and use the section V̄ = (V2)x. Note that there is a c.u.b.
E ⊆ α+ such that for β ∈ E and any γ < β, there is a w such that |Ux,w�α| < β. So the

distinction of footnote 5 is irrelevant here.
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Proof. Fix f : κ → κ such that for all α, f(α) < α++. Consider the game Gf

defined as follows:

Player I r(0) r(1) r(2) ...
Player II x(0) x(1) x(2) ...

τ (0) τ (1) τ (2) ...

If there is a least i such that (r)i or (x)i is not in P0, then player I wins if and only
if (r)i ∈ P0. Suppose then that r, x ∈ W , that is, for all n, (r)n ∈ P0 ∧ (x)n ∈ P0.
Let α = ψ(x) = supn ϕ0((x)n). Then player II wins provided τ is a strategy with
the following properties. There is a g : α+ → α+ such that if for all n, (w)n codes
a Σα

1 well-founded relation, then τ (w) codes a Σα
1 well-founded relation of length

> g(supn |Ux,(w)n�α|), and also [g]μα
≥ f(α).

The usual boundedness argument and Lemma 18 (and its proof) show that
player I cannot have a winning strategy for Gf . Let σ be a winning strategy for
player II in Gf . Inspecting the definition of T++ shows that T++

σ is well-founded.
There is a c.u.b. C2 ⊆ C such that if player I plays r ∈ W with ψ(r) = α ∈ C2,
then σ(r) = 〈x, τ 〉, where x ∈ W and ψ(x) = α. Let α ∈ C2 with cf(α) = ω. Fix
r ∈ W with ψ(x) = α, and let σ(r) = 〈x, τ 〉. Then by Lemma 17 and the comment
in footnote 6 there is a c.u.b. D ⊆ α+ such that for β ∈ D with cf(β) = ω, there
is a w such that for all n, |Ux,(w)n�α| < β and we also have supn |Ux,(w)n�α| = β
and (V2)x,w�β is ill-founded. Also, for such a β and w, τ (w) = y codes a Σα

1 well-
founded relation of length > g(β), where [g]μα

> f(α). It follows that for such an
α that [β �→ T++

σ �β]μα
> f(α).

From the normality of the measures μα it follows that if [f ′]μ < [f ]μ, then there
is a function h such that h(α) < α+ and f ′(α) = [β �→ T++

σ �β(h(α))| for almost all
α. This shows that [f ]μ is a well-ordering of [α �→ α+]μ = κ+. So, [f ]μ < κ++. So,
[α �→ α++]μ ≤ κ++. �

Let δ = [α �→ α++]μ. We have shown δ ≤ κ++. The lower bound will follow
from the fact that δ is regular, which follows from the partition property δ → (δ)ϑ

for ϑ < ω1, which follows from the polarized partition property we show below.
We are finally in the position to code ordinals below δ. Such a code is a triple of

the form (x, σ1, σ2), where x ∈ P0, T
+
σ1

is well-founded, and T++
σ2

is well-founded.
Let P2 be the set of codes for ordinals below δ.

Since (x, σ1) ∈ P1, it determines a function h with h(α) < α+ almost everywhere.
The triple then codes the ordinal [f ]μ, where f(α) = [β �→ |T++

σ2
�β(h(α))|]μα

.

Lemma 20. Every ordinal below δ is coded by a triple in P2.

Proof. This is clear from the proof of Claim 19. �

2.3.3. Proof of Theorem 10. Let P be a partition of the block functions from 3×ω·ϑ
to (κ, κ+, δ). Fix a bijection π : ω·ϑ → ω. Let≺π be the corresponding well-ordering
of ω. An ordinal j < ω · ϑ can be identified with a pair j = (i, n), where i < ϑ and
n < ω, using lexicographic ordering on the pairs. We shall frequently pass back
and forth from this identification.

Consider the following game G, where player I plays out a real 〈x, y, z〉, and
player II plays out the real 〈x′, y′, z′〉. If there is a j < ω · ϑ such that (x)π(j) /∈ P0

or (x′)π(j) /∈ P0, then player I wins if and only if for the least such j we have
that (x)π(j) ∈ P0. Suppose then that for all j < ω · ϑ, (x)π(j) and (x′)π(j) are
in P0. In this case, x and x′ each determine a function from ω · ϑ to κ, viz.
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F̄x(j) := |(x)π(j)| and F̄x′ := |(x′)π(j)|, respectively. So, together they produce a

function F = Fx,x′ : ϑ → κ given by F (i) = supn max{F̄x(i, n), F̄x′(i, n)}.
Suppose next that there is an α < κ such that one of the following holds.

(a) There is a j < ω · ϑ such that either T+
(y)π(j)

�α or T+
(y′)π(j)

�α is ill-founded.

(b) There is a β < α+ and a j < ω · ϑ such that either T++
(z)π(j)

�β or T++
(z′)π(j)

�β
is ill-founded.

Let α < κ be least such that (a) or (b) above holds. If (a) holds, let j be least
such that (a) holds for α and this j. In this case, player I wins provided T+

(y)π(j)
is

well-founded. If (a) does not hold at α, but (b) does, let (β, j) be lexicographically
least such that (b) holds. Player I wins in this case provided T++

(z)π(j)
�β is well-

founded.
Suppose finally that neither (a) nor (b) hold for all α < κ. Then each of y, y′

determine a block function from (ω ·ϑ)×κ to κ. Namely, for α ∈ C and j < ω ·ϑ, let
ḡy = |T+

(y)π(j)
�α|. Likewise, y′ determines the block function ḡy′ . Together, they de-

termine the block function g : ϑ× κ → κ by g(α, i) = supn max{ḡy(α, j), ḡy′(α, j)},
where j = (i, n). Finally, g determines a function G = Gy,y′ : ϑ → κ+ by G(i) =
[α �→ g(α, i)]μ.

In a similar fashion, each of z, z′ determine block functions h̄z, h̄z′ . For α ∈ C,
β < α+, and j < ω · ϑ, let h̄z(α, β, j) = |T++

(z)π(j)
�β|. Similarly define h̄z′ . Together

they determine a block function h defined by: for α ∈ C, β < α+, and i < ϑ,
let h(α, β, i) = supn max{h̄z(α, β, j), h̄z′(α, β, j)}, where j = (i, n). Finally, h
determines a functionH = Hz,z′ : ϑ → δ given by H(i) = [α �→ [β �→ h(α, β, i)]μα

]μ.
Finally in this case we say Player II wins the run of the game if and only if

P(F,G,H) = 1.
Suppose without loss of generality that Player II has a winning strategy τ (the

case where player I has a winning strategy is slightly easier). We define first a c.u.b.
set C0 ⊆ κ. For each η < κ and j < ω · ϑ, let

Aη,j = {(x, y, z) ; ∀j′ ≤ j ((x)π(j′) ∈ P0 ∧ ϕ0((x)π(j′)) ≤ η)}.

Clearly Aη,j ∈ Δ (recall Γ is the Steel pointclass of Wadge rank κ). Since τ is
winning for Player II, if (x, y, z) ∈ Aη,j , and τ (x, y, z) = (x′, y′, z′), then for all
j′ ≤ j, we have ((x′)π(j′) ∈ P0) and by boundedness

ρ0(η, j) := sup{ϕ0((x
′)π(j′)) ; (x

′, y′, z′) ∈ τ [Aη,j ] ∧ j′ ≤ j} < κ.

Let C0 ⊆ C be c.u.b. and closed under ρ0.
We next define a c.u.b. C1 ⊆ κ+. For α ∈ C0 with cf(α) = ω, η < α+, and

j < ω · ϑ, let
Aα,η,j ={(x, y, z) ; ∀j ((x)π(j) ∈ P0 ∧ ϕ0((x)π(j)) < α)

∧ ∀α′ < α ∀β < (α′)+ ∀j (T+
(y)π(j)

�α and T++
(z)π(j)

�β are well-founded)

∧ ∀j′ ≤ j (|T+
(y)π(j′)

�α| ≤ η)}.

Since τ is winning for player II, if (x, y, z) ∈ Aα,η,j and τ (x, y, z) = (x′, y′, z′), then
x′ ∈ W and ϕ0((x

′)π(j)) < α for all j. Furthermore, since Aα,η,j ∈ Δα
1 , we have by

boundedness that

ρ1(α, η, j) := sup{|T+
(y′)π(j′)

�α| ; j′ ≤ j ∧ (x′, y′, z′) ∈ τ [Aα,η,j ]} < α+.
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Construct (uniformly in α) sets Dα ⊆ α+ which are c.u.b. and closed under (η, j) �→
ρ1(α, η, j). Let E1 ⊆ κ+ be the set of [f ]μ such that ∀∗μα f(α) ∈ Dα. Let F1 ⊆ κ+

be the set of limit points of ordinals of the form [α �→ |T+
x �α|]μ, where T+

x is well-
founded. F1 is c.u.b. in κ+ from Lemma 14. Clearly E1 is also c.u.b. in κ+. Let
C1 = E1 ∩ F1.

Finally, we define a c.u.b. C2 ⊆ δ. For α ∈ C0 with cf(α) = ω, β, η < α+, and
j < ω · ϑ, let
Aα,β,η,j ={(x, y, z) ; ∀j ((x)π(j) ∈ P0 ∧ ϕ0((x)π(j)) < α)

∧ ∀α′ < α ∀β < (α′)+ ∀j (T+
(y)π(j)

�α and T++
(z)π(j)

�β are well-founded)

∧ ∀j |T+
(y)π(j)

�α| < β ∧ ∀(β′, j′) ≤lex (β, j) (|T++
(z)π(j)

�β| ≤ η)}.

We have Aα,β,η,j ∈ Δα
1 . Since τ is winning for Player II, for each (x, y, z) ∈ Aα,β,η,j ,

if τ (x, y, x) = (x′, y′, z′), then ∀(β′, j′) ≤lex (β, j) T++
(z′)π(j′)

�β is well-founded. By

boundedness,

ρ2(α, β, η, j) := sup{|T++
(z′)π(j′)

�β| ; (x′, y′, z′) ∈ τ [Aα,β,η,j ] ∧ j′ ≤ j} < α+.

Let Eα be a c.u.b. subset of α+ closed under ρ2. Let Eα
2 ⊆ α++ be the c.u.b. set

of all [f ]μα
, where ran(f) ⊆ Eα. Let E2 ⊆ δ be the c.u.b. set of all [g]μ, where

g(α) ∈ Eα
2 for α < κ. E2 is c.u.b. in δ from the definition of δ. Let F2 be the

c.u.b. subset of δ consisting of limits of points of the form [α �→ [β �→ |T++
x �β|]μα

]μ,
where T++

x is well-founded. From Claim 19, F2 is c.u.b. in δ. Let C2 = E2 ∩ F2.
Let C ′

0 be the set of limit points of C0, and likewise for C ′
1, C

′
2. To finish, we

show the following.

Claim 21. (C ′
0, C

′
1, C

′
2) is homogeneous for P.

Proof. Suppose (F,G,H) is a block function from 3 × ϑ into (C ′
0, C

′
1, C

′
2) of the

correct type (since ϑ is countable, this just means that F , G, H are increasing,
discontinuous, and have range in points of cofinality ω).

Let F̄ : ω · ϑ → κ be increasing and induce F , that is, F (i) = supj<ω·(i+1) F̄ (j)

for all i < ϑ. Let x ∈ ωω be such that for all j < ω · ϑ, (x)π(j) ∈ P0 and

ϕ0((x)π(j)) = F̄ (j).

Let Ḡ : ω ·ϑ → κ+ be increasing and induce G, that is, G(i) = supj<ω·(i+1) Ḡ(j)

for all i < ϑ. We may assume Ḡ has range in C1. Since C1 ⊆ F1, for each j < ω · ϑ
we may get a yj ∈ ωω (using countable choice) such that T+

yj
is well-founded and

Ḡ(j) = [α �→ |T+
yj

�α|]μ. Let y ∈ ωω be such that for all j < ω·ϑ we have (y)π(j) = yj .

Let H̄ : ω · ϑ → δ be increasing and induce H. We may assume H has range
in C2. Since C2 ⊆ F2, for each j < ω · ϑ there is a zj ∈ ωω such that T++

zj is

well-founded and H̄(j) = [α �→ [β �→ |T++
zj �β|]μα

]μ. Let z ∈ ωω be such that for all

j < ω · ϑ we have (z)π(j) = zj .
Let (x′, y′, z′) = τ (x, y, z). Recall that we identify ω · ϑ with lexicographic order

on pairs (i, n) where i < ϑ and n ∈ ω. Since x ∈ W and τ is winning for Player II,
it follows that x′ ∈ W as well. Let F̄x′ : ω · ϑ → κ be the function determined by
x′, that is, F̄x′(j) = |(x′)π(j)|. Since ran(F̄x) ⊆ C0, it follows from the definition of

C0 that F̄x′(i, n) < F̄x(i, n + 1) < F̄ (i) for all i < ϑ. So, for each i < ϑ we have
supn max{F̄x(i, n), F̄x′(i, n)} = F (i). Thus the function Fx,x′ jointly produced by
x and x′ is equal to F .
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Consider next y and y′. For all j < ω · ϑ we have that T+
(y)π(j)

and T++
(z)π(j)

are

well-founded. Let α0 = supi<ϑ F (i) = supj<ω·ϑ F̄ (j). Let ḡy be the block function

determined by y. That is, for α ∈ C0 and j < ω · ϑ, ḡy(α, j) = |T+
(y)π(j)

�α|. For

μ almost all α the function ḡαy (j) = ḡy(α, j) is increasing. Let gαy be the function
induced by ḡαy , that is, g

α
y (i) = supn ḡ

α
y (j), where j = (i, n). For μ almost all α, gαy

has range in the limit points of Dα (as defined above in the construction of C1).
Say M1 ⊆ C0 is this measure one set. Consider any α ∈ M1 with α > α0. Then
for any j < ω · ϑ we have that (x, y, z) ∈ Aα,η,j , where η = ḡαy (j) < gαy (i) (where

again j = (i, n)). It follows from the definition of Dα that |T+
(y′)π(j)

�α| < gαy (i) as

well. So, if ḡαy′ is the function determined by y′ (i.e., ḡαy′(j) = |T+
(y′)π(j)

�α|), then ḡαy′

and ḡαy both induce the function gαy . It follows that the function Gy,y′ they jointly
produce is equal to G.

Consider finally z and z′. For α ∈ M1, β < α+, and j < ω · ϑ, let h̄α
z (β, j) =

|T++
(z)π(j)

�β|. Since H̄ is increasing and induces H, it follows from the definition of

z that if j′ < j, then ∀∗μα ∀∗μα
β h̄α

z (β, j
′) < h̄α

z (β, j). This implies that there is a μ

measure one set M ′
2 ⊆ M1 such that for α ∈ M ′

2 there is a c.u.b. C ⊆ α+ which is
closed under h̄α

z and such that the map (β, j) �→ h̄α
z (β, j) is order-preserving when

restricted to pairs with β ∈ C, cf(β) = ω. Also, from the definition of E2 there is
a μ measure one set M2 ⊆ M ′

2 such that for α ∈ M2 we have that there is a c.u.b.
C ⊆ α+ such that for β ∈ C with cf(β) = ω we have in addition that for all i < ϑ
that supn h

α
z (β, j) ∈ Eα

2 , where j = (i, n).
Now consider α ∈ M2 with α > α0 (α0 as above). Fix a c.u.b. C ⊆ α+ as

with the two properties specified immediately above. Let β ∈ C with cf(β) = ω
and β > sup gαy (j). For such a β, if j < ω · ϑ and η = hα

z (β, j), then from the
definition of Aα,β,η,j we see that (x, y, z) ∈ Aα,β,η,j . From the definition of Eα

2 it
follows that hα

z′(β, j) < sup hα
z (β, j

′), where j = (i, n), and the supremum ranges
over j′ = (i, n′). It follows that the function H̄z′ induces the function H, that is,
H = Hz,z′ . Since τ is winning for Player II, we have that P(F,G,H) = 1 and we
are done. q.e.d. (Claim 21)

We have proved the claim, and this finishes the proof of Theorem 10 (and thus
the proof of Theorem 9).

2.4. A polarized partition property with higher exponents. We now im-
prove Theorem 9 from countable exponents to arbitrary exponents ϑ < κ. The
setup is the same as in the proof of Theorem 9: we have the (Steel) pointclass
Γ ⊆ S(κ) forming the lowest level of the projective-like hierarchy containing S(κ)
which is scaled, non-selfdual, closed under ∀ωω

and finite intersections and unions,
and let Δ = Γ ∩ Γ̆.

Theorem 22. Assume AD. Let κ be a weakly inaccessible Suslin cardinal. Then
for all ϑ < κ we have (κ, κ+, κ++) → (κ, κ+, κ++)ϑ.

Proof. We fix ϑ < κ, and fix a prewellordering � ∈ Δ of length ω · ϑ. We shall use
the coding lemma to code functions from ω · ϑ to κ. We again identify the ordinals
below ω · ϑ with the pairs (i, n) ordered lexicographically, where i < ϑ and n < ω.
We shall also use the trees T+ and T++ from the proof of Theorem 9.
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Fix a pointclass Γ0 ⊆ Δ which is non-selfdual, is closed under ∃ωω

, has the
prewellordering property, and contains the prewellordering �. Fix a Γ0-universal
set U . Without loss of generality we may assume dom(�) = ωω. Let |a| denote the
rank of a ∈ ωω in �. For x ∈ ωω, we say x codes a function at j < ω · ϑ provided

(i) ∀a (|a| = j → ∃b U(x, a, b));
(ii) ∀a, a′, b, b′ (U(x, a, b) ∧ U(x, a′, b′) ∧ |a| = |a′| = j → (b, b′ ∈ P0 ∧ ϕ0(b) =

ϕ0(b
′)).

We say x codes a function from ω ·ϑ to κ (or just say x codes a function) if x codes
a function at j for all j < ω · ϑ.

Recall that if S is a tree, we write S(γ) to denote the subtree of S consist-
ing of points in S below γ (we are identifying ordinals with finite tuples here for
convenience).

Now fix a partition P of the block functions from 3×ϑ to (κ, κ+, κ++). Consider
the game G where player I plays out the real 〈x, y, u, z, v, w〉 and player II plays
out the real 〈x′, y′, u′, z′, v′, w′〉. Suppose first that there is a least j < ω · ϑ+ such
that x or x′ does not code a function at j. In this case, player II wins if and only if
x does not code a function at j. Suppose next that both x and x′ code functions.
If there is a least j such that y or y′ does not code a function at j, player II again
wins if and only if y does not code a function at j. Likewise, if all of x, y, x′, y′

code functions and there is a least j such that z or z′ doesn’t code a function at j,
player II wins if and only if z doesn’t code a function at j.

Suppose next that x, y, z, x′, y′, z′ all code functions from ω ·ϑ to κ. We let f̄x, f̄y,
etc. denote these functions. Let α ∈ Cω be the least ordinal, if it exists, such that
one of the following holds.

(a) There is a j < ω · ϑ such that either T+
u �α(f̄y(j)) or T+

u′�α(f̄y′(j)) is ill-
founded.

(b) There is a j < ω · ϑ such that either T+
v �α(f̄z(j)) or T+

v′ �α(f̄z′(j)) is ill-
founded.

(c) There is a β < α+ and a j < ω · ϑ such that either T++
w �β(|T+

v �α(f̄z(j))|)
or T++

w′ �β(|T+
v′ �α(f̄z′(j))|) is ill-founded.

Suppose first that such an α exists. If (a) holds, let j be least such that either
T+
u �α(f̄y(j)) or T+

u′�α(f̄y′(j)) is ill-founded. Player II then wins if and only if
T+
u �α(f̄y(j)) is ill-founded. If (a) does not hold, but (b) holds, then let j be least

such that either T+
v �α(f̄z(j)) or T+

v′ �α(f̄z′(j)) is ill-founded. Player II then wins if
and only if T+

v �α(f̄z(j)) is ill-founded. If (a) and (b) do not hold but (c) holds,
then let (β, j) be the lexicographically least pair witnessing (c). Player II then wins
if and only if T++

w �β(T+
v �α(f̄z(j))) is ill-founded.

Finally, if no such α exists, then let F = Fx,x′ be the function jointly produced
by f̄x and f̄x′ . That is, F̄ (i) = supn max{f̄x(i, n), f̄x′(i, n)} for all i < ϑ.

Let ḡy,u be the block function defined as follows. For α ∈ Cω and j < ω · ϑ, let
ḡy,u(α, j) = |T+

u �α(fy(j))|. Likewise define ḡy′,u′ using y′ and u′. Let Ḡy,u be the
function from ω ·ϑ to κ+ represented by ḡy,u. That is, Ḡy,u(j) = [α �→ ḡy,u(α, j)]μ.
Likewise define Ḡy′,u′ . Finally, let G = Gy,u,y′,u′ : ϑ → κ+ be the function they
jointly produce: G(i) = supn max{Ḡy,u(i, n), Ḡy′,u′(i, n)}.

Let h̄z,v,w be the block function defined as follows. For α ∈ Cω, β < α+,
and j < ω · ϑ, let h̄z,v,w(α, β, j) = |T+

w �β(|T+
v �α(f̄z(j))|)|. Notice we may write

this as h̄z,v,w(α, β, j) = |T+
w �β(ḡz,v(α, j))|. Similarly define h̄z′,v′,w′ using z′, v′,
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w′. Let H̄z,v,w : ω · ϑ → κ++ be the function represented by h̄z,v,w. That is,
H̄z,v,w(j) = [α �→ [β �→ h̄z,v,w(α, β, j)]μα

]μ. Let H = Hz,v,w,z′,v′,w′ : ϑ → κ++ be
the function they jointly produce: H(i) = supn max{H̄z,v,w(i, n), H̄z′,v′,w′(i, n)}.

Player II then wins the run of the game G provided P(F,G,H) = 1.
Suppose without loss of generality that player II has a winning strategy τ for G.

We define c.u.b. sets C ′
0, C

′
1, C

′
2 in κ, κ+, κ++ respectively which are homogeneous

for P. The argument is similar to that of Theorem 9, so we shall concentrate on
the differences.

We first define C0 (C ′
0 will be the set of limit points of C0). For each η < κ and

j < ω · ϑ, let
Aη,j = {c = 〈x, y, u, z, v, w〉 ; ∀j′ ≤ j (x codes a function at j′ ∧ fx(j

′) ≤ η)}.
Clearly Aη,i ∈ Δ. Since τ is winning for player II, if c ∈ Aη,i, and τ (c) =
〈x′, y′, u′, z′, v′, w′〉, then for all j′ ≤ j, fx′ codes a function at j′. By bounded-
ness,

ρ(η, j) := sup{fx′(j′) ; 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,j ] ∧ j′ ≤ j} < κ.

Let C0 ⊆ C be c.u.b. and closed under f .
We next define C1. For η < κ, η ∈ C0, with cf(η) > ϑ (for convenience), α ∈ Cω,

α > η, j < ω · ϑ, and δ < α+, let

Aη,α,j,δ ={c = 〈x, y, u, z, v〉 ; x, y, z code functions ∧ (∀j f̄x(j), f̄y(j), f̄z(j) ≤ η)

∧ ∀(α′, j′) ≤lex (α, j) |T+
u �α′(f̄y(j

′))| ≤ δ

∧ ∀α′ < α ∀β′ < (α′)+ ∀j′ < ω · ϑ,
T++
w �β′(|T+

v �α′(f̄z(j
′))|) is well-founded}.

Let c′ = 〈x′, y′, u′, z′, v′, w′〉 = τ (c), where c = 〈x, y, u, z, v, w〉 ∈ Aη,α,j,δ . From
the second and third conjuncts in the above definition it follows that the least α′

such that (a), (b), or (c) holds for c, c′ is at least α. Furthermore, the second con-
junct gives that (a) does not hold at α for all j′ ≤ j. It follows that T+

u′�α′(fy′(j′))
is well-founded for all (α′, j′) ≤lex (α, j). For η, α, j, δ as above, define

ρ1(η, α, j, δ) = sup{T+
u′�α(fy′(j′)) ; j′ ≤ j ∧ c′ = 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,α,j,δ]}.

Claim 23. ρ1(η, α, j, δ) < α+.

Proof. We define a Σα
1 well-founded relation of length at least ρ1(η, α, j, δ). Since

Σα
1 = S(α), it then follows that ρ1(η, α, j, δ) < α+. In defining this relation we

again for convenience think of the elements of T+ as ordinals rather than tuples of
ordinals. Define a relation S by letting

(b,u, s)S(b′, u′, s′) ↔ b = b′ ∧ u = u′ ∧ ∃c ∈ Aη,α,j,δ ∃y ∃j′ ≤ j ∃a
[τ (c)1 = y ∧ τ (c)2 = u ∧ |a| = j′ ∧ U(y, a, b) ∧ (b ∈ P0 ∧ ϕ0(b) ≤ η) ∧ s, s′ ∈ P0

∧ ϕ0(s), ϕ0(s
′) < α ∧ (ϕ0(s) <T+

u �α ϕ0(s
′) <T+

u �α ϕ0(b))],

where <T+
u �α refers to the Kleene-Brouwer ordering on the tree T+

u �α. From the

above remarks we have that S is well-founded. From the coding lemma, T+�α
is Σα

1 in the codes (relative to P0�α). Also, Aη,α,j,δ ∈ Δα
1 using the closure of

Δα
1 under <α+ unions and intersections (for the last conjunct in the definition

of Aη,α,j,δ note that if well-founded |T++
w �β′(|T+

v �α′(f̄z(j
′))|)| must have rank less

than (α′)+ < α). Since also η < α, it follows that S ∈ Σα
1 , and we are done. �
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We let Cα
1 be the set of ordinals below α+ closed under the ρ1 function. Let

C1 ⊆ κ+ be the set of [G]μ, where G(α) ∈ Cα
1 for μ almost all α.

The definition of C2 is similar to that of C1. For η < κ, η ∈ C0, with cf(η) > ϑ,
α ∈ Cω, α > η, j < ω · ϑ, and β, δ < α+, let

Aη,α,j,β,δ ={c=〈x, y, u, z, v, w〉 ; x, y, z code functions ∧(∀j f̄x(j), f̄y(j), f̄z(j)≤η)

∧ ∀α′ ≤ α ∀j′ < ω · ϑ |T+
u �α′(f̄y(j

′))| ≤ δ

∧ ∀α′ ≤ α ∀j′ < ω · ϑ |T+
v �α′(f̄z(j

′))| ≤ δ

∧ ∀α′ < α ∀β′ < (α′)+ ∀j′ < ω · ϑ,
T++
w �β′(|T+

v �α′(f̄z(j
′))|) is well-founded

∧ ∀(β′, j′) ≤lex (β, j) |T++
w �β′(|T+

v �α(f̄z(j′))|)| ≤ δ}.

It again follows that Aη,α,j,β,δ ∈ Δα
1 . Suppose c′〈x′, y′, u′, z′, v′, w′〉 = τ (c),

where c = 〈x, y, u, z, v, w〉 ∈ Aη,α,j,β,δ . Since x, y, z all define functions taking values
below η, and since η ∈ C0 it follows that x′, y′, z′ also all code functions below η
(for y′, z′ we also use that cf(η) > ϑ so that sup(f̄y), sup(f̄z) are also below η).
From the second, third, and fourth conjuncts in the definition of Aη,α,j,β,δ and the
fact that τ is winning for player II it follows that the least α′ such that (a), (b), or
(c) holds at α′ is ≥ α. Also, from the second conjunct it follows that (a) cannot
hold at α. From the third conjunct it follows that (b) cannot hold at α. From the
last conjunct it then follows that for all β′ < α+ and j′ with (β′, j′) ≤lex (β, j) that
T++
w′ �β′(|T+

v′ �α(f̄z′(j′))|) is well-founded.
For η, α, β, j, δ as in the definition of Aη,α,j,β,δ define

ρ2(η, α, β, j, δ) = sup{|T++
w′ �β′(|T+

v′ �α(f̄z′(j′))|)| : (β′, j′) ≤lex (β, j)

∧ c′ = 〈x′, y′, u′, z′, v′〉 ∈ τ [Aη,α,β,j,δ ]}.

Analogous to Claim 23 we have:

Claim 24. ρ2(η, α.β.j, δ) < α+.

Proof. The proof follows from a computation as in Claim 23, using the fact that
|β| = α, so T++�β is isomorphic to a tree on α. �

For α ∈ Cω, now let Cα
2 be the c.u.b. subset of α+ consisting of points closed

under the ρ2 function. Let Dα ⊆ α++ be the c.u.b. set of ordinals of the form
[h]μα, where ran(h) ⊆ Dα

2 . Finally, let C2 ⊆ κ++ be the c.u.b. set of ordinals of
the form [H]μ, where H(α) ∈ Dα for μ almost all α.

We now show that the c.u.b. sets C ′
0, C

′
1, C

′
2 are homogeneous for the given

partition P. Fix a block function (F,G,H) from 3×ϑ to (C ′
0, C

′
1, C

′
2) of the correct

type. Let F̄ , Ḡ, H̄ from 3×ω ·ϑ to (κ, κ+, κ++) be increasing and induce (F,G,H).
From the coding lemma, let x be such that x codes a function at j for all j < ω ·ϑ

and such that f̄x = F̄ .
Since κ+ is regular by Theorem 9, sup(G) < κ+. Let u be such that T+

u is well-
founded and [α �→ |T+

u �α|]μ > sup(G). Let g̃ : ω · ϑ → κ be defined as follows. For
j < ω · ϑ, let ḡ(j) be the ordinal less than κ such that ∀∗μα [α �→ |Tu�α(ḡ(j))|]μ =

Ḡ(j). This is well-defined by the normality of μ and the definition of u. Let y be
such that y codes the function g̃ (i.e., for all j < ω · ϑ, y codes a function at j, and
the value coded at j is g̃(j)).
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Since κ++ is also regular by Theorem 9, sup(H) < κ++. From the previous
section there is a real w such that T++

w is well-founded and such that [α �→ [β �→
|T++

w �β]μα
]μ > sup(H). Define a function 
 : ω · ϑ → κ+ as follows. For j < ω · ϑ,

let 
(j) < κ+ be the ordinal represented by α �→ 
(j, α) with respect to μ, where
for almost all α ∈ Cω we have:

H(j) = [α �→ [β �→ |T++
w �β(
(j, α))|]μα

]μ.

This is well-defined from the definition of w and the fact that each μα is normal.
Let z, v be the reals corresponding to 
 just as y, u correspond to ḡ. So, z codes a
function f̄z from ω · ϑ to κ, and T+

v is well-founded.
Consider the run of the game where player I plays c = 〈x, y, u, z, v, w〉, and

player II responds with c′ = τ (c) = 〈x′, y′, u′, z′, v′, w′〉. Let η be the least point in
C0 greater than max{sup(fx), sup(fy), sup(fz)} which has cofinality greater than ϑ.
Since f̄x = F̄ has range in C0, it follows that x

′ also codes a function f̄x′ : ω ·ϑ → κ,
and the first function they jointly produce, namely,

Fx.x′(i) = sup
n

max{f̄x(i, n), f̄x′(i, n)}

is equal to F .
Now consider α > η in Cω. For such an α and any j = (i, n) < ω · ϑ, let

δ = |T+
u �α(f̄y(j)| < α+. An easy argument shows, as in the proof of the last

section, that there is a μ measure one set of α such that the map j �→ |T+
u �α(f̄y(j))|

is increasing, and we may assume α is in this set. By definition we have c ∈ Aη,α,j,δ.
Thus, c′ ∈ τ [Aη,α,j,δ]. Hence T+

u′�α(f̄y′(j)) is well-founded and |T+
u′�α(f̄y′(j))| ≤

ρ1(η, α, j, δ).

Claim 25. For μ almost all α and all i < ϑ, supn ḡy,u(i, n) ∈ Cα
1 .

Proof. We have ran(G) ⊆ C ′
1. If for almost all α there is an i < ϑ for which this

fails, them by the κ-completeness of μ we could fix a i which witnessed the failure
for almost all α. Now, G(i) = supn Ḡ(i, n) is represented with respect to μ by the
function α �→ supn ḡy,u(α, (i, n)).

So, for μ almost all α, supn ḡy,uu(α, (i, n)) ∈ (Cα
1 )

′. �

It follows that ρ1(η, α, j, δ) < supn ḡy,u(α, (i, n)) = gy,u(α, i), where j = (i,m)
for some m. Thus, for μ almost all α we have that for all i < ϑ that

sup
n

max{ḡy,u(α, (i, n)), ḡy′,u′(α, (i, n))} = gy,u(α, i).

It follows that the second function Gy,u,y′,u′ that the players jointly produce is
equal to G.

By a similar argument, the third function Hz,v,w,z′,v′,w′ they jointly produce is
equal to H. Here we consider α > η and β < α+ such that β > supj ḡy,u(α, j),
and β > supj ḡz,v(α, j). For such α, β we have that c ∈ Aη,α,j,β,δ , where δ =

h̄z,v,w(α, β, j). We assume here that α is in the μ measure one set such that the
function (β, j) �→ h̄z,v,w(α, β, j) is order-preserving when restricted to a c.u.b. C ⊆
α+ (as in the proof of the previous section). An easy argument as above shows that
we may assume that for μ almost all α, and for μα almost all β, and all i < ϑ that
supn h̄z,v,w(α, β, (i.n)) ∈ Cα

2 . Thus, ∀∗μα ∀∗μα
β ∀i < ϑ (supn h̄z′,v′,w′(α, β, (i, n)) =

supn h̄z,v,w(α, .β, (i, n))). It follows that Hz,v,w,z′,v′,w′ = H. Since τ is winning for
Player II it follows that P(F,G,H) = 1, and we are done. �
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2.5. The strong polarized partition property. In this section, we now prove
the optimal result, consequences of which will be used in the applications in §3.5.

Theorem 26. Assume AD. Let κ be a weakly inaccessible Suslin cardinal. Then
(κ, κ+, κ++) → (κ, κ+, κ++)κ.

The proof of Theorem 26 is again similar to that of the previous results, and we
again use the trees T+ and T++ from before. Let P denote the given partition of
the block functions of the correct type from (κ, κ, κ) to (κ, κ+, κ++).

We now code functions from κ to κ using the uniform coding lemma
(cf. [KKMW81]). Let U ⊆ ωω × ωω be universal for the syntactic class Σ1(Q),
where Q is a binary predicate symbol. Recall A ∈ Σ1(Q) if A(x) ↔ A′(x0, x) ↔
∃y (B(x, y) ∧ ∀n Q((y)n)), where B ∈ Σ1

1. So, we may define the universal set U
by: Uz(x, y) ↔ ∃w (S(z, 〈x, y〉, w) ∧ ∀n Q((w)n)), where S is universal for Σ1

1.
Recall that P is our Γ-complete set, and {ϕm} a Γ-scale on P (with norms

onto κ). Let Pα = {x ∈ P ; |x| = α} be the set of codes for α < κ. Also, R
is the prewellordering on P given by ϕ0, so R ∈ Γ. For α < κ, recall also that
Rα = {(x, y) ∈ R ; ϕ0(y) < α} is the restriction of R to reals of norm less than α.
Let R′

α be the restriction of R to reals of norm ≤ α.
Let {ρn} be a Γ-scale on R, and let ρα (or ρ′α) denote its restriction to Rα (or

R′
α). For any α < κ, ρα is a Δ-scale on Rα (similarly for ρ′α). Uniformly in α,

the scale ρ′α induces a scale on U(R′
α). This gives, uniformly in α, a uniformizing

relation U(R′
α) ∈ Δ (uniformizing on the last coordinate) of U(R′

α). In fact, U(R′
α)

is in the projective hierarchy containing R′
α.

For α < κ, let α′ < κ be the least reliable ordinal ≥ α (with respect to the
scale {ϕn} on P ). We let G : κω → ωω be the Lipschitz continuous generic coding
function from the Kechris-Woodin theory of generic codes for uncountable ordinals
(cf. [KW08] for the theory of generic codes). This means G has the following
properties. For all s ∈ κω, G(s) ∈ P . Also, for all α < κ, and any s ∈ (α′)ω

enumerating an honest set S ⊆ α′, |G(α�s)| = α. Here (and throughout this
section) |z| denotes ϕ0(z). For α < κ, we say that comeager many x ∈ Pα have
property B (where B ⊆ ωω), written ∀∗x ∈ Pα B(x), if player II has a winning
strategy in the game where players I and II play si ∈ (α′)<ω and player II wins the

run if and only if G(α�s�
0 s

�
1 · · · ) ∈ B. If B is Suslin and co-Suslin, then this game is

Suslin and co-Suslin as well, and hence determined (cf. [KKMW81, Theorem 2.5]).
We also write ∀∗s ∈ (α′)ω to denote that player II has a winning strategy in the

game where players I and II play si ∈ (α′)<ω to produce s = s�
0 s

�
1 s2 · · · .

We code functions from κ to κ using the uniform coding lemma as follows. For
any f : κ → κ there is a real x such that for all α < κ, the set Ux(Rα) codes f�α.
That is, Ux(Rα)(a, b) if and only if ϕ0(a) < α, b ∈ P , and ϕ0(b) = f(ϕ0(a)). We
say x codes a function at α if Ux(R

′
α) satisfies:

(i) For all a, |a| = α implies that there is some b with Ux(R
′
α)(a, b).

(ii) For all a, a′, b, and b′, we have that (Ux(R
′
α)(a, b) ∧ Uz(R

′
α)(a

′, b′) ∧ |a| =
|a′| = α → |b| = |b′|) holds.

We code functions from κ to κ+ as follows. Given y ∈ ωω, and given δ < α ∈ C0,
we say y is good at (δ, α) if for comeager many a ∈ Pδ, there is a (unique) b such
that Uy(R

′
δ)(a, b), and for this b we have that T+

b �α is well-founded. We let gy(δ, α)
be the least ordinal <α+ such that for comeager many a ∈ Pδ, and b as above,
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|T+
b �α| ≤ gy(δ, α). This is well-defined using the fact that cf(α+) > ω and the

additivity of category.
We say y is good at α ∈ Cω if y is good at (δ, α) for all δ < α. If y is good

at α for μ almost all α ∈ Cω, then y codes the function Gy : κ → κ+ defined by
Gy(δ) = [α �→ gy(δ, α)]μ.

We code functions from κ to κ++ as follows. Given z ∈ ωω, δ < α ∈ Cω and
β < α+, we say z is good at (δ, α, β) if for comeager many a ∈ Pδ, if Uz(R

′
δ)(a, b),

then T++
b �β is well-founded. We let hz(δ, α, β) be the least ordinal < α+ such that

for comeager many a ∈ Pδ, and b as above, |T++
b �β| ≤ hz(δ, α, β). We say z is good

at (α, β) if for all δ < α we have that z is good at (δ, α, β). We say z is good at α if
for all δ < α and all β < α+, z is good at (δ, α, β). If for μ almost all α ∈ Cω and
μα almost all β < α+ we have that z is good at (α, β), then z codes the function
Hz : κ → κ++ given by

Hz(δ) = [α �→ [β �→ gz(δ, α, β)]μα
]μ.

Consider the game G where player I plays out reals (x, y, z) and player II plays
out (x′, y′, z′). Let α < κ be the least ordinal, if one exists, such that one of the
following holds.

(1) For some δ < α we have that y or y′ is not good (δ, α).
(2) For some δ < α and β < α+ we have that z or z′ is not good at (δ, α, β).
(3) x or x′ does not code an ordinal at α.

Suppose first that an α < κ satisfying (1), (2), or (3) exists, and let α be the
least such. First we check to see if case (1) holds at α. If so, then player II wins
the run if and only if for the least δ as in (1) we have that y is not good at (δ, α).
Suppose next that case (1) does not hold at α. Then we check to see if case (2)
holds at α. If so, and if (β, δ) is the lexicographically least pair as in (2), then
player II wins the run if and only if z is not good at (δ, α, β). Suppose next that
(1) and (2) do not hold at α, but case (3) holds. Player II then wins provided x
does not code an ordinal at α.

Finally, suppose that there is no α < κ satisfying (1), (2), or (3). So, x, x′,
both code functions fx, fx′ from κ to κ. Let F : κ → κ be defined from fx and fx′

as usual, that is, F (β) = supj<ω·(β+1)max{fx(j), fx′(j)}. Similarly, y and y′ code

functions Gy, Gy′ from κ to κ+. These determine the function G : κ → κ+ in the
usual way. Likewise, z and z′ determine Hz, Hz′ : κ → κ++ which then determine
H : κ → κ++.

Player II then wins the run of the game if and only if P(F,G,H) = 1. Suppose
without loss of generality that player II has a winning strategy τ for the game, and
we define homogeneous sets C0 ⊆ κ, C1 ⊆ κ+, and C2 ⊆ κ++.

For η1, η2 < κ, let A(η1, η2) be the set of (x, y, z) satisfying the following:

(a) y is good at α for all α ≤ η1.
(b) z is good at α for all α ≤ η1.
(c) x codes a function at all α ≤ η1 and fx(α) ≤ η2.

A straightforward computation using the closure of Δ under quantifiers shows
that A(η1, η2) ∈ Δ. From the definition ofG, if (x, y, z) ∈ A(η1, η2) and (x′, y′, z′) =
τ (x, y, z), then x′ codes a function at all α ≤ η1. By boundedness (since Γ is closed
under ∧, ∨), it follows that

ρ0(η1, η2) := sup{fx′(α) ; α ≤ η1 ∧ (x′, y′, z′) ∈ τ [A(η1, η2)]} < κ.
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Let C0 ⊆ κ be a c.u.b. subset closed under ρ0.
For α ∈ Cω, δ < α, and η < α+, let A(δ, α, η) be the set of (x, y, z) satisfying:

(a) y and z are good at all α′ < α, and for all α′ < α, x codes a function at
α′ with fx(α

′) < α.
(b) For all δ′ ≤ δ, y is good at (δ′, α) and gy(δ

′, α) ≤ η.

Lemma 27. For δ<α ∈ Cω, if X(x, y)∈Σα
1 , then X ′(x) ↔ ∀∗s ∈ (δ′)ω X(G(s), y)

is also in Σα
1 .

Proof. Write X(x, y) ↔ ∃z Y (x, y, z), where Y ∈ Πα
0 . Fix a non-selfdual pointclass

Γ0 closed under ∃ωω

, ∧, ∨ contained within <α-Suslin and which has prewellorder-
ings of length at least δ′ (the least reliable ≥ δ). Using the coding lemma, we code
strategies on δ′ by reals. We then have:

z ∈ X ′ ↔ ∃w[w codes a strategy τw : (δ′<ω)ω → (δ′<ω)ω × ωω × ωω

∧ ∀(s, y, z) a run according to τw, Y (G(s), y, z)].

Saying w codes a strategy is projective over Γ0, as is coding a run according to
τw. Since Y ∈ Πα

0 , it follows that X
′ is Σα

1 . �
Claim 28. A(δ, α, η) ∈ Δα

1 .

Proof. The set B = {w ; |T+
w �α| ≤ η} is in Δα

1 . Since Δα
1 is closed under <α+

unions and intersections (Theorem 8), it is enough to show that A′ = A′(δ, α, η) is
Δα

1 , where
z ∈ A′ ↔ ∀∗a ∈ Pδ ∃b (Uz(R

′
δ)(a, b) ∧ |T+

b �α| ≤ δ).

It is enough, by a symmetrical argument, to show that A′ ∈ Σα
1 . This follows

immediately from Lemma 27. �
If y ∈ A(δ, α, η) and y′ = τ (y), then y′ is good at (δ, α). This follows from the

winning conditions for player II in the game G, specifically the fact that case (1) is
considered at stage α first.

Claim 29. sup{gy′(α, δ) ; y′ ∈ τ [A(δ, α.η)]} < α+.

Proof. The supremum in question has length bounded by the length of the
following ordering:

y1 ≺ y2 ↔ (y1, y2 ∈ τ [A(δ, α, η)]) ∧ ∃s0 ∈ (δ′)<ω ∀∗s1 ∈ (δ′)ω ∀∗s2 ∈ (δ′)ω

∃b1, b2 (Uy1
(R′

δ)(G(s), b1) ∧ (Uy2
(R′

δ)(G(s�
0 s), b2) ∧ |T+

b1
�α| < |T+

b2
�α|))

It follows from Lemma 27 that � ∈ Σα
1 provided we show that there is a Σα

1

relation S(b1, b2) which when restricted to pairs such that T+
b1

�α and T+
b2

�α are

well-founded correctly computes the relation |T+
b1

�α| ≤ |T+
b2

�α|. To see this, let Γn

be a sequence of non-selfdual pointclasses closed under ∃ωω

, ∧, ∨ of Wadge ranks
cofinal in α. Let Un be universal sets for Γn. Let ψn be a Γn prewellordering of
length αn, where supn αn = α. Each real z codes the relation Rz ⊆ α × α given
by Rz =

⋃
n R

n
z , where Rn

z is the relation on αn defined by (α, β) ∈ Rn
z if and only

if there are u and v such that ψn(u) = α, ψn(v) = β, and Un((z)n, u, v). From
the coding lemma, every relation on α is coded in this manner by some z. We can
then say that S(b1, b2) holds if and only if there is a z such that Rz is an order-
preserving map from T+

b1
�α to T+

b1
�α. Using the closure of Δα

1 under <α unions

and intersections (Theorem 8), it is straightforward to verify that S ∈ Σα
1 . q.e.d.

(Claim 29)
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Now let

ρ1(δ, α, η) = sup{gy′(α, δ) ; y′ ∈ τ [A(δ, α.η)]}.

Let C ′
1(α) be the c.u.b. subset of α+ of points closed under ρ1. Let C ′

1 = [α �→
C ′

1(α)]μ, so C ′
1 is a c.u.b. subset of κ+. Let C ′′

1 be a c.u.b. subset of κ+ so that
between any two elements ρ1 = [f ]μ < [g]μ = ρ2 of C ′′

1 , there is a b ∈ ωω such that
T+
b is well-founded and ∀∗μα f(α) < |T+

b �α| < g(α). Let C1 = C ′
1 ∩ C ′′

1 .

Lastly, we define C2 ⊆ κ++. For δ < α ∈ Cω, and β < η < α+, let A(δ, α, β, η)
be the set of (x, y, z) satisfying:

(a) y and z are good at all α′ < α, and for all α′ < α, x codes a function at
α′ with fx(α

′) < α.
(b) y is good at (δ′, α) for all δ′ < α, and gy(δ

′, α) < β.
(c) For all (β′, δ′) ≤lex (β, δ), z is good at (β′, δ′) and hz(δ

′, α, β′) ≤ η.

A computation as in the proof of Claim 28 shows that A(δ, α, β, η) ∈ Δα
1 . If

(x, y, z) ∈ A(δ, α, β, η) and (x′, y′, z′) = τ (x, y, z), then from the winning conditions
on G it follows that z′ is good at (δ, α, β). A computation as in Claim 29 shows
that

ρ2(δ, α, β, η) := sup{hz′(α, δ, β) ; z′ ∈ τ [A(δ, α.β, η)]} < α+.

Let C ′
2(α) be c.u.b. in α+ and closed under ρ2. Let C

′
2 be those ρ < κ++ such that

ρ = [α �→ [β �→ 
(α, β)]μα
]μ, where 
(α, β) ∈ C ′

2(α). An easy argument shows that
C ′

2 is c.u.b. in κ++. Let C ′′
2 be c.u.b. in κ++ such that between any two ordinals

ρ1 < ρ2 of C ′′
2 , there is a z such that T++

z is well-founded and ρ1 < [α �→ [β �→
|T++

z �β|]] < ρ2. From the proof of Claim 19 it follows that such a C ′′
2 exists. Let

C2 = C ′
2 ∩ C ′′

2 .
Now suppose that (F,G,H) are block functions of the correct type into the block

c.u.b. sets (C0, C1, C2), and we show that P(F,G,H) = 1.
Let F̄ : ω · κ → C0 induce F , and let x code the function F̄ , that is, x is good at

all α < κ and fx = F̄ .
Let Ḡ : ω · κ → C1 induce G. There is a function ḡ which induces Ḡ in the

following sense. ḡ(δ, α) is defined for all δ < α ∈ Cω, and ḡ(δ, α) < α+. Also,
Ḡ(δ) = [α �→ ḡ(δ, α)]μ for all δ < κ. From the normality of μ, we may assume
without loss of generality that ḡ(δ, α) ∈ C ′

1(α) for all α ∈ Cω and that for all α ∈ Cω

that δ �→ ḡ(δ, α) is strictly increasing. We code (some) c.u.b. subsets of κ by reals
as follows. Say σ is a code if for all w ∈ P , σ(w) ∈ P . In this case, let Cσ be the
c.u.b. subset of κ closed under σ, that is, Cσ = {α ; ∀w (w ∈ P<α → σ(w) ∈ P<α)}.
An easy boundedness argument shows that Cσ is actually c.u.b. in κ. Also, an easy
Solovay game argument shows that every c.u.b. C ⊆ κ contains a subset of the
form Cσ. Since Ḡ has range in C ′′

1 , for each δ < κ there are reals w such that T+
w

is well-founded and ∀∗μα ḡ(δ, α) ≤ |T+
w �α| < ḡ(δ + 1, α). For each δ < κ, let Ḡ′(δ)

be the least ordinal between Ḡ(δ) and Ḡ(δ + 1) which is of the form [α �→ |T+
w �α]μ

for some w with T+
w well-founded. There is a function ḡ′, with ḡ′(δ, α) defined for

δ < α ∈ Cω, such that for all δ < κ we have Ḡ′(δ) = [α �→ ḡ′(δ, α)]μ and for all α,
δ �→ ḡ′(δ, α) is increasing. Also, we may assume ḡ(δ, α) ≤ ḡ′(δ, α) < ḡ(δ + 1, α) for
all δ < α ∈ Cω.
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From the uniform coding lemma, let y ∈ ωω be such that:

(1) For all δ < κ and all a ∈ Pδ, there is a (unique) 〈b, c〉 such that Uy(R
′
δ)(a,

〈b, c〉).
(2) For all a ∈ Pδ and 〈b, c〉 such that Uy(R

′
δ)(a, 〈b, c〉), T+

b is well-founded

and [α �→ |T+
b �α|]μ = Ḡ′(δ).

(3) For such a, b, c we have that Cc codes a c.u.b. subset of κ such that for all
α ∈ Cc ∩ Cω we have that |T+

b �α| = ḡ′(δ, α) (where δ = |a| as above).
For δ < α ∈ Cω, let


(δ, α) = sup{|c(x)| ; ∃a, b, x (a ∈ Pδ ∧ Uy(R
′
δ)(a, 〈b, c〉) ∧ x ∈ P<α}.

By boundedness, 
(δ, α) < κ. Let E ⊆ κ be a c.u.b. subset closed under 
. For all
α ∈ E ∩ Cω we have that y is (δ, α) good and gy(δ, α) = ḡ′(δ, α) for all δ < α.

In a similar manner, we let H̄ : κ → κ++ induce H, and let h̄ be defined for
δ < α ∈ Cω and β < α+ and such that for all δ < ω · κ, H̄(δ) = [α �→ [β �→
h̄(δ, α, β)]μα

]μ. We may assume that for all α < κ that (β, δ) �→ h̄(δ, α, β) is
increasing (with respect to lexicographic order), and h̄(δ, α, β) ∈ C ′′

2 (α) for all
δ < α ∈ Cω and β < α+. For δ < ω · κ, let H̄ ′(δ) < H̄(δ + 1) be least such that
for some w ∈ ωω, T++

w is well-founded and H̄ ′(δ) = [α �→ [β �→ [|T++
w �β|]]μα

]μ. An
easy argument shows that there is an h̄′ such that for all δ < α ∈ Cω and β < α+

we have h̄(δ, α, β) < h̄′(δ, α, β) < h̄(δ+1, α, β), and for each δ there is a real w such
that T++

w is well-founded and ∀∗μα ∀∗μα
β h̄′(δ, α, β) = |T++

w �β|. We say a pair (σ,w)

codes a measure one set if σ codes a c.u.b. subset Cσ of κ (as above) and T++
w is

well-founded. We let A(σ,w) = {(α, β) ; α ∈ Cσ∧∀γ < β (|T++
w �γ| < β)}. Using the

tree T++ it follows that if A has measure one in the sense that ∀μα ∀∗μα
β (α, β) ∈ A,

then there is a (σ,w) with A(σ,w) ⊆ A. From the uniform coding lemma, fix a real
z such that:

(1) For all δ < ω · κ and all a ∈ Pδ, there is a (unique) 〈b, c, d〉 such that
Uz(R

′
δ)(a, 〈b, c, d〉).

(2) For all a ∈ Pδ and 〈b, c, d〉 such that Uz(R
′
δ)(a, 〈b, c, d〉), T++

b is well-

founded and [α �→ [β �→ |T++
b �β|]μα

]μ = H̄ ′(δ).
(3) For such a, b, c, d we have that (c, d) codes a measure one set A(c,d) such

that for all (α, β) ∈ A(c,d) we have that |T+
b �β| = h̄′(δ, α, β) (where again

δ = |a|).
For δ < α ∈ D0 define:


1(δ, α) = sup{|c(x)| ; ∃a, b, d (a ∈ Pδ ∧ Uz(R
′
δ)(a, 〈b, c, d〉) ∧ x ∈ P<α}.

For δ < α ∈ D0 and β < α+ define:


2(δ, α, β) = sup{|T++
d �η| ; ∃a, b, c (a ∈ Pδ ∧ Uz(R

′
δ)(a, 〈b, c, d〉) ∧ η < β}.

A boundedness argument as before shows that 
1(δ, α) < κ. Likewise, a tree
argument shows that 
2(δ, α, β) < α+.

Let D ⊆ κ be the c.u.b. set of points closed under 
1. For α ∈ D ∩ Cω, let
Eα be the c.u.b. subset of α+ closed under 
2. So, if α ∈ D ∩ Cω and β ∈ Eα,
then (α, β) ∈ A(c,d) for all (c, d) such that for some a ∈ Pδ, δ < α, we have

Uz(R
′
δ)(a, 〈b, c, d〉).

Now consider the run of the gameG where player I plays out (x, y, z) and player II
responds with τ (x, y, z) = (x′, y′, z′). First note that x, y, and z are all fully good
(with the obvious meaning). In particular x′ codes a function fx′ : κ → κ. For

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COFINALITY AND MEASURABILITY OF ℵ1, ℵ2 AND ℵ3 85

any α < ω · κ, (x, y, z) ∈ A(α, F̄ (α)). Also, A(α, F̄ (α)) ∈ Δ. So, (x′, y′, z′) ∈
τ [A(α, F̄ (α)] and therefore fx′(α) < ρ0((α), F̄ (α)) < F̄ (α+1) since F̄ has range in
C0 which is closed under ρ0. So, the function Fx,x′ jointly produced from fx and
fx′ is equal to F .

Let Ey be the c.u.b. subset of κ as defined above, the set of closure points of

 = 
y. Let ḡ, ḡ′ be as in the definition of y, so ḡ(δ, α) ≤ ḡ′(δ, α) < ḡ(δ + 1, α)
for all δ < α ∈ Cω. Also let gy be the function coded by y, since y is good.
That is, gy(δ, α) is the least γ < α+ such that for comeager many a ∈ Pδ, if

Uy(R
′
δ)(a, 〈b, c〉), then |T+

b �α| = gy(δ, α). So, for all α ∈ Ey ∩ Cω and δ < α
we have gy(δ, α) = ḡ′(δ, α). If α is in addition closed under the function F , then
we have that (x, y, z) ∈ A(δ, α, ḡ′(δ, α)). For such δ, α it follows that gy′(δ, α) <

(δ, α, ḡ′(δ, α)) < ḡ(δ+1, α). So, for all δ < ω·κ, Ḡy(δ) = [α �→ gy(δ, α)]μ and Gy′(δ)
are both less than Ḡy(δ+1, α). So, supδ′<ω·(δ+1) max{Ḡy(δ

′), Ḡy′(δ′)} = G(δ). So,

the function jointly produced by y and y′ is equal to G.
The argument for z, z′ is similar. Recall that H : κ → κ++, H̄ : ω ·κ → κ++, and

h̄(δ, α, β) induces H̄ , that is, H̄(δ) = [α �→ [β �→ h̄(δ, α, β)]μα
]μ. Also, h̄′ is fixed

and h̄(δ, α, β) ≤ h̄′(δ, α, β) < h̄(δ + 1, α, β). Let Dz ⊆ κ be the c.u.b. set of points
closed under 
1 as above. For α ∈ Dz ∩Cω, let E

α
z ⊆ α+ be the c.u.b. set of points

closed under 
2 (more precisely, the function (δ, β) �→ 
2(δ, α, β)). Consider (α, β)
such that α ∈ Ey, α ∈ Dz ∩Cω, β ∈ Eα

z , α is closed under F , β > supδ<α{ḡ′(δ, α)},
and for all β′ < β and δ < α, hz(δ, α, β

′) < β. This set of pairs A has measure
one set with respect to the iterated measure, that is, ∀∗μα ∀∗μα

β (α, β) ∈ A. For

(α, β) ∈ A, z is in the set A(δ, α, β, h̄′(δ, α, β)) for all δ < α. Since h̄ has its range
in the C ′

2(α), hz′(δ, α, β) < h̄(δ+ 1, α, β). Thus, for all δ < ω · κ, H̄z(δ) and H̄z′(δ)
are both less than H̄(δ+1). It follows that the function jointly produced by z and
z′ is equal to H.

Since τ is winning for player II, it follows that P(F,G,H) = 1, and we are done.

3. Application to choiceless set theory

As mentioned in § 1, our main application and the motivation for proving Theo-
rem 26 is the determination of the consistent patterns of cofinality and measurabilty
for the first three uncountable cardinals.

We shall use the labels M and ℵn, standing for “measurable” and “non-measur-
able and cofinality ℵn”, respectively, and write

[ x1 / x2 / x3 ]

for the statement “ℵ1 has property x1, ℵ2 has property x2, and ℵ3 has property x3”.
There are exactly 60 (= 3 × 4 × 5) such patterns: ℵ1 can be measurable, regular
non-measurable, or singular (3 possibilities); ℵ2 can be measurable, regular non-
measurable, or have cofinality ℵ1 or ℵ0 (4 possibilities); and ℵ3 can be measurable,
regular non-measurable, or have cofinality ℵ2, ℵ1, or ℵ0 (5 possibilities).

A pattern [ x1 / x2 / x3 ] is called trivially inconsistent if there are 0 ≤ k <
i < j ≤ 3 such that xi = ℵk and xj = ℵi. For example, [ℵ0 /ℵ1 /M ] is trivially
inconsistent. This is because ℵ1 is singular, but cf(ℵ2) = ℵ1, which is obviously
impossible. A simple combinatorial calculation shows that there are 13 trivially
inconsistent patterns. These are the patterns 13, 18, 33, 38, 44, 49, 51, 52, 53, 54,
55, 58, and 59 in our table in Figures 1 and 2.
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3.1. Forcing facts.

Theorem 30. If V |= ZF+“κ is a measurable cardinal”, Pκ is Př́ıkrý forcing for
κ, and G is Pκ-generic over V, then in the generic extension V[G], cf(κ) = ℵ0,
any cardinal having cofinality κ in V now has cofinality ℵ0, and the cofinalities and
measurability of all other cardinals are unchanged.

Proof. This is [Apt96, Lemmas 1.2, 1.3 and 1.5]. �

Theorem 31. If V |= ZF+“ℵ1 is measurable”, Add(ω, ω1) is the partial order
for adding ω1 many Cohen reals, and G is Add(ω, ω1)-generic over V, then in the
generic extension V[G], ℵ1 is regular but non-measurable and the cofinalities and
measurability of all other cardinals are unchanged.

Proof. The fact that ℵ1 becomes non-measurable is a special case of the general
ZF-result (due to Ulam) that if κ injects into 2λ for some λ < κ, then there cannot
be a κ-complete ultrafilter on κ (cf. [Kan94, Theorem 2.8]). Obviously, the ω1-
sequence of Cohen reals produces an injection of ω1 into 2ω. Since Add(ω, ω1) is
canonically well-orderable and |Add(ω, ω1)| = ℵ1, the proof that all cardinals and
cofinalities are preserved is the same as when AC is true. Since |Add(ω, ω1)| = ℵ1,
the argument given in the proof of [AH86, Lemma 2.1] shows that the measurability
of all cardinals greater than ℵ1 is preserved. �

Theorem 32. If V |= ZFC+“κ < λ are measurable cardinals”, then for x3 ∈
{ℵ0,ℵ1,ℵ2,ℵ3,M}, there is a symmetric submodel Nx3 satisfying [M /ℵ2 / x3 ]. If
x3 
= M, only one measurable cardinal is needed in V.

Proof. We sketch the proof of Theorem 32. Without loss of generality, we assume
that GCH holds in V. Let G0 be Col(ω,<κ)-generic over V, where for ρ < ζ, ρ a
regular cardinal, ζ a cardinal, Col(ρ,<ζ) is the Lévy collapse of all cardinals less
than ζ to ρ. For H which is Col(ρ,<ζ)-generic over V and ξ ∈ (ρ, ζ) a cardinal, let
H�ξ be all elements of H which are members of Col(ρ,<ξ). Let G1 be Col(κ+, <γ)-
generic over V, where γ is either κ+ω, κ+κ, κ+η for η = κ+, or λ. We write
HDV(X) for the class of sets hereditarily V-definable with a parameter from X.
Consider the symmetric model Nx3 := HDV({G0�δ ; δ ∈ (ω, κ) and δ is a cardinal}∪
{G1�δ ; δ ∈ (κ+, γ) and δ is a cardinal}). Since in V, there is a κ+ sequence
of subsets of κ, standard arguments show that Nx3 is a model for [M /ℵ2 /ℵ0 ],
[M /ℵ2 /ℵ1 ], [M /ℵ2 /ℵ2 ], or [M /ℵ2 /M ], for γ either κ+ω, κ+κ, κ+η for η =
κ+, or λ respectively. Since in V, there is a κ+ sequence of subsets of κ and a κ++

sequence of subsets of κ+, Nx3 := HDV({G0�δ ; δ ∈ (ω, κ) and δ is a cardinal}) is
a model for [M /ℵ2 /ℵ3 ]. Clearly, the only time a second measurable cardinal is
needed in the construction is for the pattern [M /ℵ2 /M ]. �

Theorem 33. Suppose i ∈ ω. Let V |= ZF + “κ is a limit cardinal” + “λ :=
κ+i”. Let G be Col(ω,<κ)-generic over V. Consider the model M obtained by
symmetrically collapsing κ to ℵ1, i.e., the model M := HDV({G�δ ; δ ∈ (ω, κ) and
δ is a cardinal}). Then the following hold:

(i) If V |= “λ is measurable”, then M |=“λ = ℵi+1 is measurable”.
(ii) If V |= “cf(λ) = κ+j for some j ≤ i”, then M |= “cf(λ) = ℵj+1”.
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Proof. Since V |= “Col(ω,<κ) is canonically well-orderable and |Col(ω,<κ)| = κ”,
(i) follows from the argument given in the proof of [AH86, Lemma 2.1], the fact
that κ = ℵ1 in M , and the fact that cardinals at and above κ are preserved to
M ; (ii) follows from the fact that κ = ℵ1 in M and the fact that cardinals and
cofinalities at and above κ are preserved to M . �

3.2. Magidor-like forcing. In [Hen83], Henle introduced Magidor-like forcing for
controlling the cofinalities of cardinals in choiceless contexts in the presence of
partition properties. Assuming that κ → (κ)<δ and that δ is a regular, uncountable
cardinal, Magidor-like forcing changes the cofinality of κ to δ without adding any
bounded subsets to κ (thereby preserving the fact that κ is a cardinal; cf. [Hen83,
Proposition 1.3]). We define the set Pδ,κ by

Pδ,κ = {〈s, x〉 ; s ∈ [κ]<δ, x ∈ [κ]κ,
⋃

s <
⋂

x}.

We use 〈x〉 to denote {ωq ; q ∈ [x]κ}, where ωq = {
⋃

n<ω q(α+ n) ; α < κ}.
The partial ordering for Pδ,κ is now defined by saying that 〈s′, x′〉 extends 〈s, x〉

if and only if s ⊆ s′, 〈x′〉 ⊆ 〈x〉, and s′ \ s = ωt for some t ∈ [x]<δ. For p ∈ Pδ,κ, we
denote the coordinates of p by p0 and p1, i.e., p = 〈p0, p1〉.

This was generalized in [AHJ00, §6] to the context of polarized partition prop-
erties. In the following, we shall need a preservation result from [AHJ00]:

Lemma 34 (Countable final segment preservation). If (κ0, κ1) → (κ0, κ1)
<δ and δ

is regular and uncountable, then after forcing with Pδ,κ0
, the relation κ1 → (κ1)

<ω1

remains true.

Proof. This follows from the proof of [AHJ00, Proposition 6.4]. �

3.3. Reducing to base cases. Of the 60 combinatorially possible patterns, we
have already excluded 13 as trivially inconsistent. The remaining 47 patterns will
be split into graphs according to the following rules:

• If P = [ x1 / x2 / x3 ] is a pattern with xi = M, and P ′ = [ y1 / y2 / y3 ] is a
pattern with yi = ℵ0 and for j 
= i,

yj =

{
xj if xj 
= ℵi, and
ℵ0 if xj = ℵi,

then there is an edge from P to P ′. This corresponds to a forcing extension
with Př́ıkrý forcing according to Theorem 30.

• There is an edge from [M / x2 / x3 ] to [ℵ1 / x2 / x3 ]. This corresponds to a
forcing extension adding ω1 many Cohen reals according to Theorem 31.

Because of Theorems 30 and 31, if P is consistent and there is an edge from P
to P ′, then P ′ is consistent. This allows us to reduce the consistency of patterns to
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the patterns that are top elements in the graph. We shall now list all components
of this graph:

Base Case #1: [M/M/M].

[M /M /M ]

�������
�����

�����
����

�����
���

���
��

�� ����
���

���
���

[ℵ0 /M /M ]

�� ����
���

���
��

[M /ℵ0 /M ]

�����
���

���
�

����
���

���
���

[M /M /ℵ0 ]

�����
���

���
��

��

[ℵ1 /M /M ]

�� ����
���

���
��

[ℵ0 /ℵ0 /M ]

����
���

���
��

[ℵ0 /M /ℵ0 ]

��

[M /ℵ0 /ℵ0 ]

�����
���

���
��

[ℵ1 /ℵ0 /M ]

��

[ℵ1 /M /ℵ0 ]

�����
���

���
�

[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ0 ]

The component of the graph reachable from the pattern [M /M /M ] covers 12
of our patterns, the ones numbered 1, 5, 16, 20, 21, 25, 36, 40, 41, 45, 56, and 60
in our table.

Base Case #2: [M/M/ℵ2].

[M /M /ℵ3 ]

�����
���

���
�

�� ����
���

���
��

[ℵ0 /M /ℵ3 ]

��

[M /ℵ0 /ℵ3 ]

�����
���

���
�

����
���

���
��

[ℵ1 /M /ℵ3 ]

��
[ℵ0 /ℵ0 /ℵ3 ] [ℵ1 /ℵ0 /ℵ3 ]

The component of the graph reachable from the pattern [M /M /ℵ3 ] covers 6
of our patterns, the ones numbered 2, 17, 22, 37, 42, and 57. None of these was
included in the component of Base Case #1.

Base Case #3: [M/M/ℵ2].

[M /M /ℵ2 ]

�����
���

���
�

�� ����
���

���
��

[ℵ0 /M /ℵ2 ]

��

[M /ℵ0 /ℵ0 ]

�����
���

���
�

����
���

���
��

[ℵ1 /M /ℵ2 ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ0 ]

The component of the graph reachable from the pattern [M /M /ℵ2 ] covers 6
of our patterns, the ones numbered 3, 20, 23, 40, 43, and 60. Of these, three were
not included in the components of Base Cases #1 and #2.
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Base Case #4: [M/M/ℵ1].

[M /M /ℵ1 ]

�����
���

���
�

�� ����
���

���
��

[ℵ0 /M /ℵ0 ]

��

[M /ℵ0 /ℵ1 ]

�����
���

���
�

����
���

���
��

[ℵ1 /M /ℵ1 ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ0 /ℵ1 ]

The component of the graph reachable from the pattern [M /M /ℵ1 ] covers 6
of our patterns, the ones numbered 4, 19, 24, 39, 45, and 60. Of these, four were
not included in the components of Base Cases #1 through #3.

Base Cases #5a-d: [M/ℵ2/x3].

[M /ℵ2 /M ]

�����
���

���
�

�� ����
���

���
��

[M /ℵ2 /ℵ1 ]

�� ����
���

���
��

[ℵ0 /ℵ2 /M ]

��

[M /ℵ2 /ℵ0 ]

�����
���

���
�

����
���

���
��

[ℵ1 /ℵ2 /M ]

��
[ℵ1 /ℵ2 /ℵ1 ] [ℵ0 /ℵ2 /ℵ0 ] [ℵ1 /ℵ2 /ℵ0 ]

[M /ℵ2 /ℵ2 ]

�� ����
���

���
��

[M /ℵ2 /ℵ3 ]

�����
���

���
�

��
[ℵ0 /ℵ2 /ℵ2 ] [ℵ1 /ℵ2 /ℵ2 ] [ℵ0 /ℵ2 /ℵ3 ] [ℵ1 /ℵ2 /ℵ3 ]

This base case splits into four subcases, Base Case #5a [M /ℵ2 /M ], Base Case
#5b [M /ℵ2 /ℵ3 ], Base Case #5c [M /ℵ2 /ℵ2 ], and Base Case #5d [M /ℵ2 /ℵ1 ].
The components of the graph reachable from the patterns [M /ℵ2 / x3 ] cover 14 of
our patterns, the ones numbered 6, 7, 8, 9, 10, 26, 27, 28, 29, 30, 46, 47, 48, and
50, none of which was included in the components of Base Cases #1 through #4.

Base Case #6: [M/ℵ1/M].

[M /ℵ1 /M ]

�����
���

���
�

�� ����
���

���
��

[ℵ0 /ℵ0 /M ]

��

[M /ℵ1 /ℵ0 ]

�����
���

���
�

����
���

���
��

[ℵ1 /ℵ1 /M ]

��
[ℵ0 /ℵ0 /ℵ0 ] [ℵ1 /ℵ1 /ℵ0 ]

The component of the graph reachable from the pattern [M /ℵ1 /M ] covers 6
of our patterns, the ones numbered 11, 15, 31, 35, 56, and 60. Of these, four were
not included in the components of Base Cases #1 through #5.
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Base Case #7: [M/ℵ1/ℵ3].

[M /ℵ1 /ℵ3 ]

�����
���

���
�

����
���

���
��

[ℵ0 /ℵ0 /ℵ3 ] [ℵ1 /ℵ1 /ℵ3 ]

The component of the graph reachable from the pattern [M /ℵ1 /ℵ3 ] covers 3
of our patterns, the ones numbered 12, 32, and 57. Of these, two were not included
in the components of Base Cases #1 through #6.

Base Case #8: [M/ℵ1/ℵ1].

[M /ℵ1 /ℵ1 ]

�����
���

���
�

����
���

���
��

[ℵ1 /ℵ1 /ℵ1 ] [ℵ0 /ℵ0 /ℵ0 ]

The component of the graph reachable from the pattern [M /ℵ1 /ℵ1 ] covers 3
of our patterns, the ones numbered 14, 34, and 60. Of these, two were not included
in the components of any of the other base cases.

By our earlier remarks, it is enough to show the consistency of the eight base cases
in order to prove the consistency of all patterns that are not trivially inconsistent.
Note that in some cases, the graph will not give us the optimal consistency strength
upper bounds. For instance, the ZFC-pattern [ℵ1 /ℵ2 /ℵ3 ] shows up in Base Case
#5b and is obtained from the large cardinal pattern [M /ℵ2 /ℵ3 ] by forcing. For
more on upper and lower bounds, cf. § 4.

3.4. Base Cases #2, #5, and #7. In this section, we handle three of the base
cases. These three are proved consistent with techniques from forcing with large
cardinals and do not rely on either polarized partition properties or AD.

Base Cases #5a-d are just Theorem 32 and do not need any large cardinals
beyond the ones explicitly mentioned in the pattern that is created. The other
cases in this section will be proved consistent from large cardinal assumptions by
forcing in the following two theorems. None of these proofs is new. They all use
published techniques and essentially consist of proof inspection to check that the
relevant properties hold in the situation in which we are interested.

Theorem 35 (Woodin). If there are κ < λ such that κ is supercompact and λ is
measurable, then there is a model in which Base Case #2 holds (i.e., [M /M /ℵ3 ]).

Proof. This theorem is discussed in [AH86, p. 591]. Theorem 1 of that paper is a
generalization of Woodin’s result. Suppose V |= ZFC + “κ < λ are such that κ
is supercompact and λ is measurable”. Let P0 be supercompact Radin forcing as
defined in [AH86, p. 592f], with κ playing the role of κ1 and λ playing the role of κ2.
Let P1 = Col(ω,<κ), and let P = P0×P1. Let G be P -generic over V, and take N
as the choiceless inner model of [AH86, Theorem 1] defined with respect to G. By
suitably modified versions of [AH86, Lemmas 1.1 through 1.4], N |= ZF+ “κ = ℵ1

is measurable via the club filter” + “λ = ℵ2 is measurable”. By the appropriate

version of [AH86, Lemma 1.2], N |= “λ+ = ℵ3 = (λ+)
V
”. Therefore, since V ⊆ N
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and V contains a λ+ sequence of subsets of λ, N does as well. This means that
N |= “λ+ = ℵ3 is not measurable”. �

Theorem 36. If there is a supercompact cardinal, then there is a model of Base
Case #7 (i.e., [M /ℵ1 /ℵ3 ]).

Proof. This construction is essentially the same as in the proof of Theorem 35.
Suppose V |= ZFC + GCH + “κ < λ are such that κ is supercompact and λ =
κ+κ”. Again, let P0 be supercompact Radin forcing as in the proof of Theorem
35. Let P1 = Col(ω,<κ), and let P = P0 × P1. A similar argument as in the
proof of Theorem 35, using GCH to show that λ can be symmetrically collapsed to
become ℵ2, yields that the symmetric model N is such that N |= ZF + “κ = ℵ1

is measurable via the club filter” + “λ = ℵ2 is singular of cofinality κ = ℵ1” +
“λ+ = ℵ3 is not measurable”. GCH is used to infer that λ is a strong limit cardinal,
which is the key fact required in order to preserve that λ remains a cardinal after
the symmetric collapse.

�

3.5. Base Cases #1, #3, #4, #6, and #8. In this section, we shall handle
Base Cases #1, #3, #4, #6, and #8, all under the assumption that there is a
model of AD. Among these, Base Case #3 is a special case since this is the famous
AD-pattern:

Theorem 37 (Solovay-Martin). Assume AD. Then ℵ1 and ℵ2 are measurable
cardinals and cf(ℵ3) = ℵ2.

Proof. Cf. [Kan94, Theorems 28.2, 28.6 and Corollary 28.8]. �

In order to construct models for Base Cases #1, #4, and #6, we first need the
following lemma.

Lemma 38. Suppose that (κ0, κ1, κ2) → (κ0, κ1, κ2)
κ0 and κ0 > ω1. Then the

following hold:

(i) κi → (κi)
<κ0 for i = 1, 2 (so κi → (κi)

<ω1 for i = 1, 2),
(ii) (κ1, κ2) → (κ1, κ2)

<κ0 , and
(iii) κ0 → (κ0)

<ω1 .

Proof. Since (κ0, κ1, κ2) → (κ0, κ1, κ2)
κ0 and κ0 > ω1, it is trivially true that

κi → (κi)
κ0 for i = 1, 2, (κ1, κ2) → (κ1, κ2)

κ0 , and κ0 → (κ0)
ω1 . Claims (i)–(iii)

now follow from [AHJ00, Proposition 4.10]. �

Theorem 39. If there is a model of AD, then there is a model of Base Case #1
(i.e., [M /M /M ]) and Base Case #4 (i.e., [M /M /ℵ1 ]).

Proof. Using Theorem 26, we start with a limit cardinal κ such that (κ, κ+, κ++) →
(κ, κ+, κ++)κ. By Lemma 38, for γ = κ, γ = κ+, or γ = κ++, γ → (γ)<ω1 . From
this, it easily follows that γ → (γ)ω+ω, so by [Kle70, Theorem 2.1], κ, κ+, and
κ++ are all measurable. This yields a model of Base Case #1 (cf. [AH86, Theorem
2]). By Lemma 38, we know that κ++ → (κ++)<κ. Therefore, by forcing with
Magidor-like forcing Pκ,κ++ , we obtain a model in which cf(κ++) = κ and no new
bounded subsets of κ++ are added. In particular, κ and κ+ remain measurable
after this forcing. Now we can collapse κ symmetrically to become ℵ1 and apply
Theorem 33 to obtain our model for Base Case #4. �
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We explicitly note that the full power of Theorem 26 was not used in establishing
Theorem 39. For Base Case #1, all that is required are cardinals κ, κ+, and κ++

such that each of κ, κ+, and κ++ is measurable and κ is a limit cardinal (which
is a fairly weak consequence of Theorem 26 and actually follows from Theorem 9).
For Base Case #4, we only use the existence of cardinals κ, κ+, and κ++ such
that both κ and κ+ are measurable and κ++ satisfies the Ramsey-type partition
relation κ++ → (κ++)<κ (another consequence of Theorem 26; in this case, the
weaker Theorems 9 and 22 are—as far as we know—not enough to establish these
assumptions). The partition relation ensures that forcing with Pκ,κ++ changes the
cofinality of κ++ to κ without adding any bounded subsets to κ++. Without the
partition relation, it does not seem possible to be able to show that the forcing
Pκ,κ++ satisfies the aforementioned properties.

Theorem 40. If there is a model of AD, then there is a model of Base Case #6
(i.e., [M /ℵ1 /M ]).

Proof. Again, from Theorem 26, we start with a limit cardinal κ such that
(κ, κ+, κ++) → (κ, κ+, κ++)κ, and we get with Lemma 38 the Ramsey-type po-
larized partition property (κ+, κ++) → (κ+, κ++)<κ and the ordinary partition
relation κ+ → (κ+)<κ. Because κ+ → (κ+)<κ, after forcing with Magidor-like forc-
ing Pκ,κ+ , the measurability of κ is preserved (as the forcing does not add bounded
subsets of κ+), and cf(κ+) = κ. Furthermore, since (κ+, κ++) → (κ+, κ++)<κ,
by the countable final segment preservation from Lemma 34, κ++ → (κ++)<ω1

remains true. Hence, κ++ stays measurable. Now, we can collapse κ symmetrically
to become ℵ1 and apply Theorem 33 to obtain our result. �

As is the case with Theorem 39, the full power of Theorem 26 is not required
in order to establish Theorem 40. For Base Case #6, we are using the existence
of cardinals κ, κ+, and κ++ such that κ is measurable, κ+ → (κ+)<κ, and the
pair (κ+, κ++) satisfies the Ramsey-type polarized partition property (κ+, κ++) →
(κ+, κ++)<κ. The partition relation κ+ → (κ+)<κ allows us to deduce that forcing
with Pκ,κ+ changes the cofinality of κ+ to κ without adding any bounded sub-
sets to κ+ (thereby preserving the measurability of κ). The polarized partition
property ensures that forcing with Pκ,κ+ preserves the ordinary partition relation
κ++ → (κ++)<ω1 , which we then use to infer that κ++ remains a measurable car-
dinal. Without the ordinary partition relation and something along the lines of the
polarized partition relation, it does not seem possible to be able to show that the
forcing Pκ,κ+ satisfies the aforementioned properties.

For Base Case #8, we rely on the methods of [AHJ00].

Theorem 41. If L(R) |= AD, then there is a model of Base Case #8 (i.e.,
[M /ℵ1 /ℵ1 ]).

Proof. Suppose V is a model ofV = L(R) and AD. We use the modelN constructed
and investigated in [AHJ00, §8] (in particular, [AHJ00, Theorem 8.1]) and applied in
[AHJ00, Theorem 11.1]. In this model, which is a symmetric submodel of a forcing
extension of V , ℵ2 and ℵ3 have cofinality ℵ1. Further, by [AHJ00, Proposition
6.2 and Lemma 8.2], N and V have the same bounded subsets of ℵ1. Thus, since
V |=“ℵ1 is measurable”, N |=“ℵ1 is measurable” as well. This means that N is as
desired. �
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upper bound lower bound

Base Case #1: 1 [M /M /M ] ZF+ AD ZFC+WC
Base Case #2: 2 [M /M /ℵ3 ] ZFC+ SC+M ZFC+WC
Base Case #3: 3 [M /M /ℵ2 ] ZF+ AD ZFC+WC
Base Case #4: 4 [M /M /ℵ1 ] ZF+ AD ZFC+WC

(#1) 5 [M /M /ℵ0 ] ZF+ AD ZFC+WC
Base Case #5a: 6 [M /ℵ2 /M ] ZFC+ 2MC ZFC+ 2MC
Base Case #5b: 7 [M /ℵ2 /ℵ3 ] ZFC+MC ZFC+MC
Base Case #5c: 8 [M /ℵ2 /ℵ2 ] ZFC+MC ZFC+MC
Base Case #5d: 9 [M /ℵ2 /ℵ1 ] ZFC+MC ZFC+MC

(#5a) 10 [M /ℵ2 /ℵ0 ] ZFC+MC ZFC+MC
Base Case #6: 11 [M /ℵ1 /M ] ZF+ AD ZFC+WC
Base Case #7: 12 [M /ℵ1 /ℵ3 ] ZFC+ SC ZFC+WC

13 [M /ℵ1 /ℵ2 ] 0 = 1 0 = 1
Base Case #8: 14 [M /ℵ1 /ℵ1 ] ZF+ AD ZFC+WC

(#6) 15 [M /ℵ1 /ℵ0 ] ZF+ AD ZFC+WC
(#1) 16 [M /ℵ0 /M ] ZF+ AD ZFC+WC
(#2) 17 [M /ℵ0 /ℵ3 ] ZFC+ SC+M ZFC+WC

18 [M /ℵ0 /ℵ2 ] 0 = 1 0 = 1
(#4) 19 [M /ℵ0 /ℵ1 ] ZF+ AD ZFC+WC

(#1,#3) 20 [M /ℵ0 /ℵ0 ] ZF+ AD ZFC+WC
(#1) 21 [ℵ1 /M /M ] ZF+ AD ZFC+WC
(#2) 22 [ℵ1 /M /ℵ3 ] ZFC+MC ZFC+MC
(#3) 23 [ℵ1 /M /ℵ2 ] ZF+ AD ZFC+WC
(#4) 24 [ℵ1 /M /ℵ1 ] ZF+ AD ZFC+WC
(#1) 25 [ℵ1 /M /ℵ0 ] ZF+ AD ZFC+WC

(#5a) 26 [ℵ1 /ℵ2 /M ] ZFC+MC ZFC+MC
(#5b) 27 [ℵ1 /ℵ2 /ℵ3 ] ZFC ZFC
(#5c) 28 [ℵ1 /ℵ2 /ℵ2 ] ZFC ZFC
(#5d) 29 [ℵ1 /ℵ2 /ℵ1 ] ZFC ZFC
(#5a) 30 [ℵ1 /ℵ2 /ℵ0 ] ZFC ZFC

Figure 1. Lower and upper bounds for the consistency strength
of patterns 1 to 30.

4. Summary, lower bounds and open questions

Figures 1 and 2 list all of the sixty patterns of measurability and cofinality for
the first three uncountable cardinals. In the first column, we list “Base Case #n”
if a pattern is one of our base cases. We list numbers in parentheses to indicate
in which of the diagrams of § 3.3 the pattern shows up (if at all: of course, the 13
inconsistent patterns do not show up in the diagrams).

For the purpose of listing the upper and lower consistency strength bounds of
our patterns, we define the following theories: ZFC + SC + M stands for ZFC to-
gether with the statement “There are κ < λ where κ is supercompact and λ is
measurable”; ZFC+ SC stands for ZFC together with the statement “There is a su-
percompact cardinal”; ZFC+MC stands for ZFC together with the statement “There
is a measurable cardinal”; ZFC+ 2MC stands for ZFC together with the statement
“There are two measurable cardinals”; ZFC+WC stands for ZFC together with the
statement “There is a Woodin cardinal”.
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Upper bounds. Most of the upper bounds come directly from our consistency
proofs in Theorems 35, 37, 39, 32, 40, 36, and 41 (corresponding to the eight base
cases) and the reduction diagrams as listed in § 3.3. In a few cases, the upper
bound for the consistency strength obtained by our reduction diagrams is patently
not optimal. In our table, we have given the optimal bounds and briefly list these
exceptional cases in the following: patterns 22 and 26 can be obtained from a mea-
surable cardinal by symmetrically collapsing it to the desired cardinal. Patterns 27,
28, 29, 30, 47, 48, and 50 all share the feature that ℵ2 is regular but non-measurable
and do not involve any measurable cardinals; consequently, the methods of The-
orem 32 allow us to obtain them from ZFC. Patterns 32 and 37 only involve one
singular cardinal, and can thus be obtained from ZFC by symmetrically collapsing
a strong limit of the desired cofinality. Finally, pattern 46 is another application of
the methods of Theorem 32 that only requires one measurable cardinal.

Lower bounds. For the purpose of calculating lower bounds, we shall define “κ is
measurable” by “there is a normal κ-complete ultrafilter on κ”. Usually, “normal”
is not required; in ZF+DC, it is possible to construct a normal ultrafilter from a κ-
complete one (cf. [Jec03, Theorem 10.20]); i.e., our stronger definition is equivalent
to the usual definition.

There are a number of trivial lower bounds: any pattern involving a measurable
or two measurables necessarily has ZFC + MC or ZFC + 2MC as a lower bound
(by the standard L[U ] argument). For other lower bounds, our main tool is the
following theorem:

Theorem 42 (Schindler / Jensen-Steel). Suppose δ < δ+ are singular. Then there
is an inner model with a Woodin cardinal.

Proof. [Sch99, Theorem 1] proved this claim under the additional assumption that
there is some Ω > δ+ that is inaccessible and measurable in HOD. Schindler
needed this assumption to build the core model. In the meantime, Jensen and
Steel have eliminated this assumption from the construction of the core model (cf.
[JS07a, JS07b]). �

Theorem 42 allows us to deal immediately with those patterns that have two
consecutive singular cardinals (patterns 14, 15, 19, 20, 34, 35, 39, 40, 56, 57, and
60) and get a lower bound of a Woodin cardinal. Patterns that involve κ and κ+

such that either both are measurable or one of them is measurable and the other
is singular have to be transformed into those that have two consecutive singulars
by Př́ıkrý forcing via Theorem 30. This argument uses our slightly non-standard
definition of measurable cardinal (guaranteeing the existence of a normal ultrafil-
ter). This allows us to transform patterns 1, 2, 3, 4, 5, 11, 12, 16, 17, 21, 23, 24,
25, 31, 36, 41, 42, 43, and 45 into a pattern with two consecutive singulars and
thus apply Theorem 42 to get a lower bound of a Woodin cardinal. Without the
additional normality assumption, we do not know how to derive more strength than
a measurable out of, say, [ℵ0 /M /ℵ3 ].

Open questions. We end the paper by listing some remaining open questions.
Six of the eight base cases can be obtained from a model of ZF+AD, but Base Case
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upper bound lower bound

(#6) 31 [ℵ1 /ℵ1 /M ] ZF+ AD ZFC+WC
(#7) 32 [ℵ1 /ℵ1 /ℵ3 ] ZFC ZFC

33 [ℵ1 /ℵ1 /ℵ2 ] 0 = 1 0 = 1
(#8) 34 [ℵ1 /ℵ1 /ℵ1 ] ZF+ AD ZFC+WC
(#6) 35 [ℵ1 /ℵ1 /ℵ0 ] ZF+ AD ZFC+WC
(#1) 36 [ℵ1 /ℵ0 /M ] ZF+ AD ZFC+WC
(#2) 37 [ℵ1 /ℵ0 /ℵ3 ] ZFC ZFC

38 [ℵ1 /ℵ0 /ℵ2 ] 0 = 1 0 = 1
(#4) 39 [ℵ1 /ℵ0 /ℵ1 ] ZF+ AD ZFC+WC

(#1,#3) 40 [ℵ1 /ℵ0 /ℵ0 ] ZF+ AD ZFC+WC
(#1) 41 [ℵ0 /M /M ] ZF+ AD ZFC+WC
(#2) 42 [ℵ0 /M /ℵ3 ] ZFC+ SC+M ZFC+WC
(#3) 43 [ℵ0 /M /ℵ2 ] ZF+ AD ZFC+WC

44 [ℵ0 /M /ℵ1 ] 0 = 1 0 = 1
(#1,#4) 45 [ℵ0 /M /ℵ0 ] ZF+ AD ZFC+WC

(#5a) 46 [ℵ0 /ℵ2 /M ] ZFC+MC ZFC+MC
(#5b) 47 [ℵ0 /ℵ2 /ℵ3 ] ZFC ZFC
(#5c) 48 [ℵ0 /ℵ2 /ℵ2 ] ZFC ZFC

49 [ℵ0 /ℵ2 /ℵ1 ] 0 = 1 0 = 1
(#5a,#5d) 50 [ℵ0 /ℵ2 /ℵ0 ] ZFC ZFC

51 [ℵ0 /ℵ1 /M ] 0 = 1 0 = 1
52 [ℵ0 /ℵ1 /ℵ3 ] 0 = 1 0 = 1
53 [ℵ0 /ℵ1 /ℵ2 ] 0 = 1 0 = 1
54 [ℵ0 /ℵ1 /ℵ1 ] 0 = 1 0 = 1
55 [ℵ0 /ℵ1 /ℵ0 ] 0 = 1 0 = 1

(#1,#6) 56 [ℵ0 /ℵ0 /M ] ZF+ AD ZFC+WC
(#2,#7) 57 [ℵ0 /ℵ0 /ℵ3 ] ZFC+ SC ZFC+WC

58 [ℵ0 /ℵ0 /ℵ2 ] 0 = 1 0 = 1
59 [ℵ0 /ℵ0 /ℵ1 ] 0 = 1 0 = 1

(#1,#3,#4,#6,#8) 60 [ℵ0 /ℵ0 /ℵ0 ] ZF+ AD ZFC+WC

Figure 2. Lower and upper bounds for the consistency strength
of patterns 31 to 60.

#2 appears to need (assumptions on the order of) ZFC+SC+M and Base Case #7
appears to need (assumptions on the order of) ZFC+ SC.7

Question 43. Is it possible to force Base Case #2 and Base Case #7 from ZF+AD
(thus reducing the consistency strength upper bound)?

The two mentioned patterns are among 30 (out of our 60) patterns for which the
upper bound and the lower bound in consistency strength do not coincide.

Question 44. Can we determine the precise consistency strength in the cases
where upper and lower bounds do not coincide?

There are other large cardinal properties that can be exhibited by small cardinals,
such as “κ is κ+-supercompact” (under AD, ℵ1 exhibits this property (cf. [DPH78])).

7As the proof of [AH86, Theorem 1] shows, slightly weaker supercompactness hypotheses
(which are still well beyond the consistency strength of AD) actually suffice to establish Base Case
#2 and Base Case #7.
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Let us add another label for this property to our patterns, resulting in 4×5×6 = 120
patterns.

Question 45. Which of the 120 patterns involving cofinalities ℵ0, ℵ1, ℵ2, ℵ3,
measurability and κ+-supercompactness are consistent?

Note that a 1975 result of Martin (cf. [DPH78, § 2] for details) about the κ+-
supercompactness of κ under the assumption that both κ and κ+ carry a normal
measure produces some non-trivial restrictions for Question 45.

Now, after considering all measurability and cofinality patterns for the cardinals
ℵ1, ℵ2, and ℵ3, one could ask what happens if the same question is posed for the
first four uncountable cardinals. There are 3 × 4 × 5 × 6 = 360 such patterns for
the first four uncountable cardinals.

Question 46. Which of the 360 measurability and cofinality patterns for the first
four uncountable cardinals are consistent?

Of course, a complete answer to Question 46 would require (among other things)
a solution of one of the big open questions of the field of large cardinals without the
Axiom of Choice, viz. whether it is consistent to have four consecutive measurable
cardinals. As a consequence, we do not expect an answer to Question 46 very soon.

Slightly less ambitious would be to ask the same question not for four consecu-
tive cardinals, but for a different selection of three consecutive cardinals, e.g., the
cardinals ℵ2, ℵ3, and ℵ4. Here we would have 4× 5× 6 = 120 patterns.

Question 47. Which of the 120 measurability and cofinality patterns for the car-
dinals ℵ2, ℵ3, and ℵ4 are consistent?

However, most of the methods used in this paper to handle the case of the first
three uncountable cardinals will not work in this setting. The main reason is that
most of the proofs require symmetrically collapsing some large cardinal to be ℵ1.
This collapse is canonically well-orderable, and thus at our disposal in the choice-
free situation. The collapse of a cardinal to be ℵ2, however, is not canonically
well-orderable; consequently, the obvious analogues of our proofs will not work in
the setting of Question 47.

At this point, it might be useful to mention that some of the patterns have
alternative consistency proofs that are more likely to transfer to the situation of
ℵ2, ℵ3, and ℵ4. We would like to give one example: if there is a strongly compact
cardinal κ, it is possible to obtain the pattern [ℵ1 /ℵ0 /ℵ1 ] by using strongly
compact Př́ıkrý forcing. Obviously, this proof is not optimal in terms of consistency
strength (as we can get it from ZF+AD via Theorem 39). However, this proof lifts
to give a consistency proof of the pattern “ℵ2 is regular but not measurable, ℵ3 has
cofinality ℵ0, and ℵ4 has cofinality ℵ2”.

8

8A sketch of the proof is as follows. Let κ < λ be such that in our ground model V, κ is strongly
compact and λ is the least singular strong limit cardinal of cofinality ℵ2 greater than κ. Force over
V with P1×P2, where P1 = Col(ℵ2, <κ) and P2 is strongly compact Př́ıkrý forcing based on κ and
λ as defined in the proof of [AH91, Theorem 1]. Let G = G1 ×G2 be the resulting generic, with
r = 〈rn ; n < ω〉 the generic sequence through Pκ(λ) generated by G2. For δ ∈ (κ, λ) a cardinal,
define r�δ = 〈rn ∩ δ ; n < ω〉. Consider the symmetric model N := HDV({G1�δ ; δ ∈ (ℵ2, κ) and
δ is a cardinal} ∪ {r�δ ; δ ∈ (κ, λ) and δ is a cardinal}). The arguments found in the proofs of
[AH91, Theorem 1] and Theorems 31 and 32 of this paper then show that N is as desired. Note
that if P1 is redefined as Col(ℵ1, <κ), λ is redefined as the least singular strong limit cardinal of
cofinality ℵ1 greater than κ, P2 remains strongly compact Př́ıkrý forcing based on κ and λ, and
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