Lie coalgebras and rational homotopy theory II: Hopf invariants
Authors:
Dev Sinha and Ben Walter
Journal:
Trans. Amer. Math. Soc. 365 (2013), 861-883
MSC (2010):
Primary 55P62; Secondary 16E40, 55P48
DOI:
https://doi.org/10.1090/S0002-9947-2012-05654-6
Published electronically:
September 25, 2012
MathSciNet review:
2995376
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We develop a new framework which resolves the homotopy periods problem. We start with integer-valued homotopy periods defined explicitly from the classic bar construction. We then work rationally, where we use the Lie coalgebraic bar construction to get a sharp model for
for simply connected
. We establish geometric interpretations of these homotopy periods, to go along with the good formal properties coming from the Koszul-Moore duality framework. We give calculations, applications, and relationships with the numerous previous approaches.
- 1. Michel André, Homologie des algèbres commutatives, Springer-Verlag, Berlin-New York, 1974 (French). Die Grundlehren der mathematischen Wissenschaften, Band 206. MR 0352220
- 2. Michael Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8 (1968), 314–323. MR 0220799, https://doi.org/10.1016/0021-8693(68)90062-8
- 3. J. M. Boardman and B. Steer, Axioms for Hopf invariants, Bull. Amer. Math. Soc. 72 (1966), 992–994. MR 0202138, https://doi.org/10.1090/S0002-9904-1966-11613-0
- 4. J. M. Boardman and B. Steer, On Hopf invariants, Comment. Math. Helv. 42 (1967), 180–221. MR 0221503, https://doi.org/10.1007/BF02564417
- 5. Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- 6. Edgar H. Brown Jr., Twisted tensor products. I, Ann. of Math. (2) 69 (1959), 223–246. MR 0105687, https://doi.org/10.2307/1970101
- 7. Ryan Budney, James Conant, Kevin P. Scannell, and Dev Sinha, New perspectives on self-linking, Adv. Math. 191 (2005), no. 1, 78–113. MR 2102844, https://doi.org/10.1016/j.aim.2004.03.004
- 8. Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146
- 9. Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847
- 10. Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551
- 11. André Haefliger, Whitehead products and differential forms, Differential topology, foliations and Gelfand-Fuks cohomology (Proc. Sympos., Pontifícia Univ. Católica, Rio de Janeiro, 1976) Lecture Notes in Math., vol. 652, Springer, Berlin, 1978, pp. 13–24. MR 505648
- 12. Richard M. Hain, Iterated integrals and homotopy periods, Mem. Amer. Math. Soc. 47 (1984), no. 291, iv+98. MR 727818, https://doi.org/10.1090/memo/0291
- 13. Ulrich Koschorke, A generalization of Milnor’s 𝜇-invariants to higher-dimensional link maps, Topology 36 (1997), no. 2, 301–324. MR 1415590, https://doi.org/10.1016/0040-9383(96)00018-3
- 14. Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246
- 15. Walter Michaelis, Lie coalgebras, Adv. in Math. 38 (1980), no. 1, 1–54. MR 594993, https://doi.org/10.1016/0001-8708(80)90056-0
- 16. John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 0174052, https://doi.org/10.2307/1970615
- 17. Yasutoshi Nomura, On mapping sequences, Nagoya Math. J. 17 (1960), 111–145. MR 0132545
- 18. S. P. Novikov, Analytical theory of homotopy groups, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 99–112. MR 970074, https://doi.org/10.1007/BFb0082773
- 19. Edward J. O’Neill, Higher order Massey products and links, Trans. Amer. Math. Soc. 248 (1979), no. 1, 37–66. MR 521692, https://doi.org/10.1090/S0002-9947-1979-0521692-6
- 20. Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR 0257068
- 21. Michael Schlessinger and James Stasheff, The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra 38 (1985), no. 2-3, 313–322. MR 814187, https://doi.org/10.1016/0022-4049(85)90019-2
- 22. Dev P. Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461–486. MR 2188133, https://doi.org/10.1090/S0894-0347-05-00510-2
- 23. -, A pairing between graphs and trees, math.QA/0502547, 2006.
- 24. Dev P. Sinha and Ben Walter, Lie coalgebras and rational homotopy theory, I: graph coalgebras, math.AT/0610437.
- 25. Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 0646078
- 26. Ben Walter, Cofree coalgebras over cooperads, In preparation.
- 27. -, Lie algebra configuration pairing, arXiv:1010.4732 [math.RA], 2010.
- 28. J. H. C. Whitehead, An expression of Hopf’s invariant as an integral, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 117–123. MR 0020255, https://doi.org/10.1073/pnas.33.5.117
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 55P62, 16E40, 55P48
Retrieve articles in all journals with MSC (2010): 55P62, 16E40, 55P48
Additional Information
Dev Sinha
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email:
dps@math.uoregon.edu
Ben Walter
Affiliation:
Department of Mathematics, Middle East Technical University, Northern Cyprus Campus, Kalkanli, Guzelyurt, KKTC, Mersin 10 Turkey
Email:
benjamin@metu.edu.tr
DOI:
https://doi.org/10.1090/S0002-9947-2012-05654-6
Keywords:
Hopf invariants,
Lie coalgebras,
rational homotopy theory,
graph cohomology
Received by editor(s):
August 7, 2010
Received by editor(s) in revised form:
April 28, 2011
Published electronically:
September 25, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


