A Caldero–Chapoton map for infinite clusters
HTML articles powered by AMS MathViewer
- by Peter Jørgensen and Yann Palu PDF
- Trans. Amer. Math. Soc. 365 (2013), 1125-1147 Request permission
Abstract:
We construct a Caldero–Chapoton map on a triangulated category with a cluster tilting subcategory which may have infinitely many indecomposable objects.
The map is not necessarily defined on all objects of the triangulated category, but we show that it is a (weak) cluster map in the sense of Buan–Iyama–Reiten–Scott. As a corollary, it induces a surjection from the set of exceptional objects which can be reached from the cluster tilting subcategory to the set of cluster variables of an associated cluster algebra.
Along the way, we study the interaction between Calabi–Yau reduction, cluster structures, and the Caldero–Chapoton map.
We apply our results to the cluster category $\mathscr {D}$ of Dynkin type $A_{\infty }$ which has a rich supply of cluster tilting subcategories with infinitely many indecomposable objects. We show an example of a cluster map which cannot be extended to all of $\mathscr {D}$.
The case of $\mathscr {D}$ also permits us to illuminate results by Assem–Reutenauer–Smith on $\operatorname {SL}_2$-tilings of the plane.
References
- C. Amiot and S. Oppermann, Cluster equivalence and graded derived equivalence, preprint (2010). arXiv:math.RT/1003.4916.
- Ibrahim Assem and Grégoire Dupont, Friezes and a construction of the Euclidean cluster variables, J. Pure Appl. Algebra 215 (2011), no. 10, 2322–2340. MR 2793939, DOI 10.1016/j.jpaa.2010.12.013
- Ibrahim Assem, Christophe Reutenauer, and David Smith, Friezes, Adv. Math. 225 (2010), no. 6, 3134–3165. MR 2729004, DOI 10.1016/j.aim.2010.05.019
- Maurice Auslander, Selected works of Maurice Auslander. Part 1, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by Idun Reiten, Sverre O. Smalø, and Øyvind Solberg. MR 1674397
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035–1079. MR 2521253, DOI 10.1112/S0010437X09003960
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. MR 2247893, DOI 10.1090/S0002-9947-06-03879-7
- Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, and Gordana Todorov, Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3049–3060. With an appendix coauthored in addition by P. Caldero and B. Keller. MR 2322734, DOI 10.1090/S0002-9939-07-08801-6
- Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616. MR 2250855, DOI 10.4171/CMH/65
- P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347–1364. MR 2187656, DOI 10.1090/S0002-9947-05-03753-0
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169–211. MR 2385670, DOI 10.1007/s00222-008-0111-4
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 983–1009 (English, with English and French summaries). MR 2316979, DOI 10.1016/j.ansens.2006.09.003
- Raika Dehy and Bernhard Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Not. IMRN 11 (2008), Art. ID rnn029, 17. MR 2428855, DOI 10.1093/imrn/rnn029
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Thorsten Holm and Peter Jørgensen, On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon, Math. Z. 270 (2012), no. 1-2, 277–295. MR 2875834, DOI 10.1007/s00209-010-0797-z
- Osamu Iyama and Yuji Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669, DOI 10.1007/s00222-007-0096-4
- B. Keller, Categorification of acyclic cluster algebras: an introduction, arXiv:0801.3103v1 [math.RT]
- Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 76–160. MR 2681708
- Bernhard Keller and Idun Reiten, Acyclic Calabi-Yau categories, Compos. Math. 144 (2008), no. 5, 1332–1348. With an appendix by Michel Van den Bergh. MR 2457529, DOI 10.1112/S0010437X08003540
- Bernhard Keller and Idun Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123–151. MR 2313531, DOI 10.1016/j.aim.2006.07.013
- Steffen Koenig and Bin Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z. 258 (2008), no. 1, 143–160. MR 2350040, DOI 10.1007/s00209-007-0165-9
- Helmut Lenzing and Idun Reiten, Hereditary Noetherian categories of positive Euler characteristic, Math. Z. 254 (2006), no. 1, 133–171. MR 2232010, DOI 10.1007/s00209-006-0938-6
- Yann Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2221–2248 (English, with English and French summaries). MR 2473635
- Yann Palu, Cluster characters II: a multiplication formula, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 57–78. MR 2876964, DOI 10.1112/plms/pdr027
- Pierre-Guy Plamondon, Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), no. 1, 1–39. MR 2782186, DOI 10.1016/j.aim.2010.12.010
- Ralf Schiffler and Hugh Thomas, On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. IMRN 17 (2009), 3160–3189. MR 2534994, DOI 10.1093/imrn/rnp047
- Andrei Zelevinsky, What is $\dots$ a cluster algebra?, Notices Amer. Math. Soc. 54 (2007), no. 11, 1494–1495. MR 2361161
Additional Information
- Peter Jørgensen
- Affiliation: School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- Email: peter.jorgensen@ncl.ac.uk
- Yann Palu
- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
- Address at time of publication: LAMFA, Université de Picardie Jules Verne, 33, Rue Saint-Leu, 80039 Amiens, France
- MR Author ID: 857813
- Email: ypalu@maths.leeds.ac.uk, yann.palu@u-picardie.fr
- Received by editor(s): May 4, 2010
- Received by editor(s) in revised form: September 8, 2010
- Published electronically: November 6, 2012
- © Copyright 2012 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 365 (2013), 1125-1147
- MSC (2010): Primary 13F60, 16G10, 16G20, 16G70, 18E30
- DOI: https://doi.org/10.1090/S0002-9947-2012-05464-X
- MathSciNet review: 3003260