## The genus one Gromov-Witten invariants of Calabi-Yau complete intersections

HTML articles powered by AMS MathViewer

- by Alexandra Popa PDF
- Trans. Amer. Math. Soc.
**365**(2013), 1149-1181 Request permission

## Abstract:

We obtain mirror formulas for the genus 1 Gromov-Witten invariants of projective Calabi-Yau complete intersections. We follow the approach previously used for projective hypersurfaces by extending the scope of its algebraic results; there is little change in the geometric aspects. As an application, we check the genus 1 BPS integrality predictions in low degrees for all projective complete intersections of dimensions 3, 4, and 5.## References

- M. F. Atiyah and R. Bott,
*The moment map and equivariant cohomology*, Topology**23**(1984), no. 1, 1–28. MR**721448**, DOI 10.1016/0040-9383(84)90021-1 - M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa,
*Holomorphic anomalies in topological field theories*, Nuclear Phys. B**405**(1993), no. 2-3, 279–304. MR**1240687**, DOI 10.1016/0550-3213(93)90548-4 - Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes,
*A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory*, Nuclear Phys. B**359**(1991), no. 1, 21–74. MR**1115626**, DOI 10.1016/0550-3213(91)90292-6 - Geir Ellingsrud and Stein Arild Strømme,
*Bott’s formula and enumerative geometry*, J. Amer. Math. Soc.**9**(1996), no. 1, 175–193. MR**1317230**, DOI 10.1090/S0894-0347-96-00189-0 - Alexander B. Givental,
*Equivariant Gromov-Witten invariants*, Internat. Math. Res. Notices**13**(1996), 613–663. MR**1408320**, DOI 10.1155/S1073792896000414 - A. Klemm and R. Pandharipande,
*Enumerative geometry of Calabi-Yau 4-folds*, Comm. Math. Phys.**281**(2008), no. 3, 621–653. MR**2415462**, DOI 10.1007/s00220-008-0490-9 - Jun Li and Aleksey Zinger,
*On the genus-one Gromov-Witten invariants of complete intersections*, J. Differential Geom.**82**(2009), no. 3, 641–690. MR**2534991** - Bong H. Lian, Kefeng Liu, and Shing-Tung Yau,
*Mirror principle. I*, Asian J. Math.**1**(1997), no. 4, 729–763. MR**1621573**, DOI 10.4310/AJM.1997.v1.n4.a5 - Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow,
*Mirror symmetry*, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa. MR**2003030** - Rahul Pandharipande and Aleksey Zinger,
*Enumerative geometry of Calabi-Yau 5-folds*, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 239–288. MR**2683212**, DOI 10.2969/aspm/05910239 - A. Popa and A. Zinger,
*Mirror Symmetry for Closed, Open, and Unoriented Gromov-Witten Invariants*, math/1010.1946v3. - E. Scheidegger, unpublished note, 4 pages.
- Ravi Vakil and Aleksey Zinger,
*A desingularization of the main component of the moduli space of genus-one stable maps into $\Bbb P^n$*, Geom. Topol.**12**(2008), no. 1, 1–95. MR**2377245**, DOI 10.2140/gt.2008.12.1 - Don Zagier and Aleksey Zinger,
*Some properties of hypergeometric series associated with mirror symmetry*, Modular forms and string duality, Fields Inst. Commun., vol. 54, Amer. Math. Soc., Providence, RI, 2008, pp. 163–177. MR**2454324** - Aleksey Zinger,
*Reduced genus-one Gromov-Witten invariants*, J. Differential Geom.**83**(2009), no. 2, 407–460. MR**2577474** - Aleksey Zinger,
*On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps*, Adv. Math.**214**(2007), no. 2, 878–933. MR**2349722**, DOI 10.1016/j.aim.2007.03.009 - Aleksey Zinger,
*Genus-zero two-point hyperplane integrals in the Gromov-Witten theory*, Comm. Anal. Geom.**17**(2009), no. 5, 955–999. MR**2643736**, DOI 10.4310/CAG.2009.v17.n5.a4 - Aleksey Zinger,
*Standard versus reduced genus-one Gromov-Witten invariants*, Geom. Topol.**12**(2008), no. 2, 1203–1241. MR**2403808**, DOI 10.2140/gt.2008.12.1203 - Aleksey Zinger,
*The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces*, J. Amer. Math. Soc.**22**(2009), no. 3, 691–737. MR**2505298**, DOI 10.1090/S0894-0347-08-00625-5 - A. Zinger,
*The genus $0$ Gromov-Witten invariants of projective complete intersections*, math/1106.1633v2.

## Additional Information

**Alexandra Popa**- Affiliation: Department of Mathematics, SUNY Stony Brook, Stony Brook, New York 11794-3651
- Address at time of publication: Department of Mathematics, Rutgers University–Hill Center for the Mathematical Sciences, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019
- Email: alexandra@math.rutgers.edu
- Received by editor(s): October 15, 2010
- Received by editor(s) in revised form: January 26, 2011
- Published electronically: October 2, 2012
- Additional Notes: This research was partially supported by DMS grant 0846978
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**365**(2013), 1149-1181 - MSC (2010): Primary 14N35
- DOI: https://doi.org/10.1090/S0002-9947-2012-05550-4
- MathSciNet review: 3003261